Transcript Slide 1
Applications of a Novel Nickel-Catalyzed Reductive Coupling Reaction Towards the Total Synthesis of Amphidinolide T1 Me Me CH2 HO O Me O O O Me Julie Farand April 1st, 2004 Jamison et al, J. Am. Chem. Soc., 2004, 126, 998 Jamison, T.F. et al, Org. Lett., 2000, 26, 4221 1 Introduction Me • Methods of generating allylic alcohols • Nickel-catalyzed coupling between • alkynes and aldehydes • alkynes and epoxides • alkynes and imines Me CH2 HO O Me O O • Jamison’s methodology applied towards the total synthesis of amphidinolide T1 O Me 2 Preparation of Allylic Alcohols • Reductions, organomagnesium and organolithium reagents OH O O Li RMgBr R H R H NaBH4 O R • Reactive allylic sulfoxides via a [2,3]-sigmatropic rearrangement Ph Ph S R R P(OMe)3 S S O O Ph P(OMe)3 O OH MeOH R R 3 Preparation of Allylic and Homoallylic Alcohols • Allylic oxidation with selenium dioxide O Se O HO Se O H O Se [2+4] R OH OH [2,3] R R R • Homoallylic alcohols via chiral or achiral crotyl and allyl metals OH O H R2 R1 M M = B, Al, Sn, Si ... + auxiliaries R1 (L.A.) R2 4 Preparation of Allylic Alcohols : The Nozaki-Hiyama-Kishi Reaction + R1 R2CHO CrCl2, catalytic NiCl2 R DMF, 25 °C OTf R2 1 OH Entry Alkenyl triflate Aldehyde Product Yield O O 1 Bu OTf OHC 7 87% Bu OctCHO 2 Oct OTf 3 Ph 92% Ph (from trans) PhCHO Ph OTf HO 5 83% OH Ph OTf 4 7 OH Ph PhCHO 46% (from cis) Ph 85% Ph OTf HO Nozaki et al, J. Am. Chem. Soc., 1986, 108, 6048 5 Nozaki-Hiyama-Kishi Mechanism The success of this reaction heavily depended on the nature of the CrCl2! • In 1983, anhydrous CrCl2 from ROC/RIC Corp (New Jersey) proved to contain ca. 0.5 mol% of Ni on the basis of Cr • Aldrich Co. (90% purity) and Rare Metallic Co. (99.99% purity) offers anhydrous CrCl2 free from Ni salts Cr(III) X NiX Cr(III) X = I, Br, OTf RCHO Ni(0) Ni(II) 2 Cr(III) 2 Cr(II) R Hiyama, T.; Nozaki, H. et al, Tetrahedron Letters, 1983, 24, 5281 Kishi Y. et al, J. Am. Chem. Soc, 1986, 108, 5644 Nozaki, H. et al, J. Am. Chem. Soc, 1986, 108, 6048 OH 6 Synthesis of Enantioselective (E)-Allylic Alcohols O 1) HB R 2 1 R1 H Et R2 Zn 2) Et2Zn Me2N HO (+)DAIB Me2 N Et Zn C=O Re-face attack H O NH4Cl (aq) O R2 R1 R2 R1 OH Zn Et L 67-94% (79-98% ee) Oppolzer, W.; Radinov, N. J. Am. Chem. Soc., 1993, 115, 1593 7 Synthesis of Macrocyclic (E)-Allylic Alcohols O HO Me2N HO HO (+)-DAIB 1) (c-hexyl)2BH 2) Dilute rxn (0.05M) + A B 3) (+)-DAIB/Et2Zn 4) NH4Cl (aq) n n Entry n ring size 1 1 2 n Yield (%) A B ee (%) of A 13 20 9 90 2 14 35 7 91 3 3 15 60 3 88 4 6 18 61 7 91 5 9 21 43 8 88 Limitation: -Disubstituted allylic alcohols only! -Procedure is not effective with internal alkynes Oppolzer et al, J. Org. Chem., 2001, 66, 4766 8 Addition to RCHO by Zirconocene-Zinc Transmetallation R1 Cp2ZrHCl R CH2Cl2, 22°C Me2Zn ZrCp2Cl 1 toluene, -65°C R1 ZnMe Not catalytic! R2CHO, NMe2 SH Limitation....intermolecular rxn only! RCHO hydrozirconation is faster than alkyne hydrozirconation Zr R1 H O O n n H * R2 OH 63-99% ee H H Zr Wipf, P.; Ribe, S. J. Org. Chem., 1998, 63, 6454 EWG on aromatic R2CHO increase ee 9 Intramolecular Ni-Catalyzed Alkylative Cyclizations R2 R1 O X Ni(COD)2 ZnR22 HO R1 H X Alkylative Cyclization Terminal and internal alkynes .... tri- and tetrasubstituted allylic alcohols O H Entry X 1 R1 CH2 2 X CH2 R1 Ni(COD)2 : PBu3 H ZnR22 H R2 CH3 Yield(%) H HO 70 Ph 72 62 X 3 CH2 H n-Bu 4 CH2 CH3 Ph 5 CH2 CH3 n-Bu R1 64Cyclization Reductive 76 Terminal and internal alkynes .... di- and trisubstituted allylic alcohols CH3 72 6 NCOPh H with PBu3! Terminal and internal alkynes .... tri- and tetrasubstituted allylic alcohols 20 mol% Ni(COD) is required to avoid 1,2-addition of the organozinc to RCHO 2 Montgomery, J.; Oblinger, E. J. Am. Chem. Soc., 1997, 119, 9065 10 Nickel-Catalyzed Alkylative and Reductive Coupling L O 0 + R3 O L 1 H R L L NiII R3 O ZnEt2 EtZnO L Ni R1 1 H R3 Ni R1 H R R2 Ni L Et R3 R2 Large Substituent Oxidative Cyclization Small Substituent (or tether chain) L = (n-Bu)3P EtZnO Ni H R1 R3 H R2 L H R2 R2 L = THF OH R1 Et OH R3 R2 Alkylative Coupling R1 H R3 R2 Reductive Coupling Montgomery, J.; Oblinger, E.; J. Am. Chem. Soc, 1997, 119, 9065 11 Choice of Ligand R Phosphine Ligands with EDG • Soft neutral 2e-donor ligand R P M • σ-donor ability : (t-Bu)3P > Cy3P > (n-Bu)3P > Et3P > Ph3P R CO R3 P Ni CO CO PR3 , cm-1 CO (t-Bu)3P 2056.1 Cy3P 2056.4 (n-Bu)3P 2060.3 Et3P 2061.7 Ph3P 2068.9 Tolman, C. Chem. Rev. 1977, 77, 313 -donor ability 12 Reductive vs β-Hydride Elimination : Additive Effect? L O Ni0 EtZnO L + R1 R3 H R Et L = (n-Bu)3P EtZnO L Ni H R1 H 2 Ni 3 R R R1 R3 H R2 2 Intramolecular Rxn Only! L = THF OH R1 Et OH R3 R2 Alkylative Coupling R1 H R3 R2 Reductive Coupling • Direct reductive elimination is • π-acidic ligands (aldehyde) accelerate accompanied by a 2e- reduction reductive elimination • In the absence of (n-Bu)3P, unreacted RCHO of Ni • Process disfavored by the can coordinate to Ni coordination of good σ-donor (n-Bu)3P 13 Catalytic Intermolecular Reductive Coupling of Alkynes and Aldehydes Ni(COD)2 (10 mol%) phosphine (20 mol%) Et3B (200 mol%) O Ph CH3 + Ph Solvent, 23 °C, 18 h H R 100 mol% 100 mol% OH CH3 1a R = Ph 1b R = n-Pr Entry Aldehyde Phosphine R 2a-2b Solvent Product Yield Regioselectivity Cy3P THF 2a 76% 77:23 2 Et3P THF 46% 91:9 3 (n-Bu)3P THF 77% 92:8 (n-Bu)3P THF 86% 90:10 5 (n-Bu)3P Toluene 85% 92:8 6 (n-Bu)3P Toluene (40 °C) 88% 92:8 1 4 1a 1b 2b Jamison, T.F. et al, Org. Lett., 2000, 26, 4221 14 Proposed Mechanism via an Oxametallacyle L O + R2 Ni0(COD)2 R3 Ni (n-Bu)3P R1 H O L 1 H L R3 O Et2BO Et Et3B R1 1 H R2 3 SiMe Oxidative Cyclization Small Substituent L L NiII R R R3 Ph Stabilized Large cation Substituent R2 OH L R3 H R2 Ni -H Elimination Et2BO H R1 Ni L R3 H R2 H Reductive Elimination R1 R3 R2 15 Choosing the Reducing Agent O OZnR H R 1 ZnR2 + R2 20 mol% Ni R3 L H R3 O H L H Ni R1 R L II L L NiII Et3Si Et3SiH 1,2-addition onto the aldehyde in complex systems R1 O R Et3SiO H Ni R1 R1 2 intermolecular R3 R3 H R2 H L R2 L Et2BO Et Ni L -H Elimination Et3B R1 R3 H R2 Et2BO H R1 Ni L OH Reductive Elimination R3 H R1 R3 H R2 Montgomery, J.; Tang, X-Q. J. Am. Chem. Soc., 1999, 121, 6098 Jamison, T.F. et al, Org. Lett., 2000, 26, 4221 R2 16 Catalytic Intermolecular Reductive Coupling of Alkynes and Aldehydes Ni(COD)2 (10 mol%) (n-Bu)3P (20 mol%) Et3B (200 mol%) O R1 R2 + R3 H Entry Aldehyde OH R1 R3 Solvent, 18 h Product Solvent, T °C R2 Yield Regioselectivity THF, RT 77% 92:8 THF, RT 76% 96:4 Toluene, RT 89% >98:2 Toluene, RT 58% >98:2 Toluene, RT 83% 93:7 OH 1 PhCHO Ph Ph CH3 OH 2 PhCHO n-Hex Ph OH 3 n-HeptCHO Ph n-Hept SiMe3 OH 4 n-HeptCHO n-Bu n-Hept SiMe3 OH 5 o-TolCHO Ph CH3 CH3 17 Asymmetric Reductive Coupling with NMDPP Ni(COD)2 (10 mol%) (+)-NMDPP (20 mol%) O + R2 CH3 H H3C R3 Et3B (200 mol%) EtOAc:DMI (1:1) R1 H OH R1 R3 R2 CH3 PPh2 (+)-(neomenthyl) diphenylphophine Entry R1 R2 R3 1 i-Pr Me Ph 95 (>95:5) 90 2 i-Pr Me (p-Cl)Ph 75 (>95:5) 83 3 i-Pr CH2OTBS Ph 59 (>95:5) 85 4 i-Pr CH2NHBoc Ph 60 (>95:5) 96 5 n-Pr SiMe3 Ph 43 (>95:5) 92 Yield (%) Regioselectively Jamison, T.F. J. Am. Chem. Soc., 2003, 125, 3442 ee (%) 18 Ph Proposed Steric and Electronic Control Me Ni R H R H Ph Me H H O Ni Me Me Sterically Disfavored, electronically favored Ph R H Me R Me C Me Me B Sterically and electronically disfavored D Sterically and electronically favored Ph H P Me Me Me Ni O O Me H H R P Me Me A O Ni P Ph PR3 Sterically favored, electronically disfavored Ni O Me P Me Me 19 Proposed Mechanism for Asymetric Reductive Coupling Ph H H Me R Ph Ni O Me P Me Et3B Me Ni D Me R Sterically and electronically favored PR3 O L L Ni Et OBEt2 Ph R Me Hydride Elimination L Ni H Ph OBEt2 R Me H Reductive Elimination OH Ph R Me 20 Catalytic Three-Component Coupling Reaction: Allylic Amines R Me 4 Et Me HN H HN N Ni(COD)2 (5 mol%) RBX2 + R 1 R 2 + H X = OH, R R1 = aryl, alkyl R2 = alkyl, H R3 R3 = aryl, alkyl Cyp3P (5 mol%) Ph Ph + Ph Ph Me Me 1a Alkylative Coupling 2a Reductive coupling Yield : 65-98% 1a:2a >90:10 Regioselectivity >90:10 -Organoborane reagents are used for alkylative coupling -Exclusive cis addition across alkyne ( ³ 97:3) -Compatible with ketones, esters, and protic solvents 21 Boronic Acids in Catalytic Three-Component Couplings Me Ph HN B(OH)2 Ph Me Me Ni(COD)2 (5 mol%) (c-C5H9)3P (5 mol%) N Ph Me + H Ph Ph 72% (92:8 regioselectivity) MeOH/MeOAc 50 °C Ph Me HN B(OH)2 Ph Ph Me 68% (92:8 regioselectivity) 22 Enantioselectivities for Alkylative and Reductive Coupling Using (S)-(+)-NMDPP Me Me N Ph Me Ni(COD)2 (10 mol%) Et Me HN H HN (S)-NMDPP (20 mol%) + H Ar + Et3B (300 mol%) MeOAc/MeOH 0 °C, 20 h Ph CH3 H3C CH3 PPh2 (+)-(neomenthyl) diphenylphophine Ph Ph Ph Me Me 1 Alkylative Coupling + minor regioisomer 2 Reductive coupling + minor regioisomer Same ratio! Entry Ar ee 1(%) ee 2 (%) 1 Ph 41 42 2 p-ClC6H4 33 33 3 (p-CF3)C6H4 40 39 23 Proposed Mechanism for the Ni-catalyzed Coupling Reaction Between Alkynes and Imines Isolated in identical ee Me PR3 Alkylative Coupling Me Et N BEt2 Reductive Coupling N + Ni L Ar H BEt2 Me N Reductive Elimination BEt2 Me Ar H H Me PR3 BEt2 Ni N Ar N Ar Ni Et H PR3 Reductive Elimination Me PR3 Me OH BEt2 Ni N Me Ar Me PR3 BEt2 Ni N Ar -H Elimination MeOH Ar • Enantioselectivity and regioselectivity are determined in the same step and before the azametallacyclopentene • Highly selective for alkylative coupling in MeOH 24 Intermolecular Reductive Coupling of Alkynes and Epoxides R1 R2 R + Ni(COD)2 (10 mol%) Bu3P (20 mol%) 3 100 mol% R Et3B (200 mol%) Solvent, 23 °C, 24 h O 200 mol% R3 1 R2 OH Entry R1 R2 R3 Additive Solvent 1 Ph Me Me Bu3P Ether 36 >95:5 >95:5 2 " " " Bu3P Toluene 25 " " 3 " " " Bu3P EtOAc 34 " " 4 Ph Me Me Bu3P Neat 71 >95:5 >95:5 5 n-Pr n-Pr Et Bu3P Neat 35 na >95:5 Yield (%) Regioselectivity alkyne epoxide Jamison, T.F.; Molinaro, C. J. Am. Chem. Soc, 2003, 125, 8076 25 Reductive Cyclization via a Proposed Nickella(II)oxetane R R H O Ni(COD)2 Bu3P PBu3 Bu3P Ni PBu3 Ni O O R exo-dig cyclization Et3B PBu3 H H OH R Et Ni PBu3 OBEt2 OBEt2 R Ni PBu3 R 26 Summary of Nickel-Catalyzed Reaction • Racemic and enantioselective allylic alcohols OH O R1 R2 Ni(COD)2 , (n-Bu)3P + R3 H R1 R3 Et3B R2 OH Ni(COD)2 , (+)-NMDPP Et3B R1 R3 R2 • Allylic amines via three-component coupling R4 R4 N 1 R 2 R R Ni(COD)2, PR'3 + H R3 R3B / RB(OH)2 MeOH R1 R2 R3 + O Ni(COD)2), Bu3P Et3B R3 R2 • Homoallylic alcohols R1 HN R R3 1 R2 OH 27 Synthesis of Amphidinolide T1 Me • The amphidinolides are a family of macrolides produced by marine dinoflagellates of the genus Amphidinium Me CH2 HO • The marine algae live in symbiosis with the Okinawan flatworm O Me O O • Amphidinolide T1, a 19-membered macrolide, is cytotoxic against human epidermoid carcinoma KB and murine lymphoma L1210 cell lines O Me Total Synthesis of Amphidinolide T1 • Ghosh (2003) • Fürstner (2003) • Jamison (2004) Amphidinium carterae Amphidinium lactum Kobayashi, J. et al, J. Org. Chem., 2001, 66, 134 28 Ghosh’s Enantioselective Synthesis of Amphidinolide T1 via Macrolactonization Br Br Cl Me O Cl Me O OH Me Me O OH Cl Cl O O Me O i-Pr2NEt, then DMAP Toluene O O Me 71% O O Me Me Me Me CH2 HO O Zn, NH4Cl, EtOH, 80 °C 61% Me O O O (+)-Amphidinolide T1 30 steps Me Ghosh, A.K.; Liu, C. J. Am. Chem. Soc., 2003, 125, 2374 29 Fürstner’s Synthesis of Amphidinolide T1 via RCM Macrocyclization Me Me N Mes O Me N Mes Me Cl Ru MOMO Cl O Me TBDPSO O MOMO Ph PCy3 CH2Cl2, reflux 86% O O Me TBDPSO O O O Me Me Me E/Z = 6:1 Me CH2 HO O H2 , Pd/C Me O O O (+)-Amphidinolide T1 30 steps Me Fürstner, A. et al, J. Am. Chem. Soc., 2003, 125, 15512 30 Jamison’s Approach to Amphidinolide T1 Me Me Ph Ph CH2 Me Me HO O O O OH Ph Me O Me O O Ph O O Me Me Jamison’s Approach : Ni-catalyzed reductive rxn • alkyne-epoxide • alkyne-aldehyde Jamison et al, J. Am. Chem. Soc., 2004, 126, 998 31 Me CH2 HO Synthesis of Amphidinolide T1 Me O Me O O O Me O O O Me O N 1) LDA, THF 2) PhC CCH2Br O O 1) LiAlH4, THF 2) TBSCl, imid, DMF N 70% over 3 steps Me i-Pr Ph i-Pr Me O >99% ee TBSO Me Ph Ni(COD)2 (10 mol%) Bu3P (20 mol%) Et3B Me TBSO Me OH Ph 81%, >99% dr 32 Me CH2 HO Mechanism Revisited Me O Me O O O Me Me Me O R R Ni(COD)2 Bu3P + Me O Ni TBSO Me Ph Ph Ph O PBu3 Ni Bu3P PBu3 Et3B R Me R Me R Me L L Ph H OBEt2 OBEt2 OH Ph Ni H Ph Ni Et L 33 Me CH2 HO Enantioselective Brown (Z)-Crotyl Addition Me O Me O O O Me O OH (+)-Ipc2B H CH3 OTBS OTBS 93% ee CH3 H3C CH3 H B RCHO R H CH3 B O CH3 CH3 2 L S M H Both methyl groups of the campheyl moiety are on the opposite side of the allyl group H3C RB R O S B M 2 L CH3 Brown, H.C.; Bhat, K. J. Am. Chem. Soc.,1986, 108, 5919 34 Me CH2 HO Synthesis of Amphidinolide T1 Me O Me O O O Me OH BH3.THF; H2O2, NaOH OH HO OTBS OTBS Me Me HO O (CH2)4OTBS TPAP, NMO O Me DIBAL-H HO O O (CH2)4OTBS Me (CH2)4OTBS 31% over 4 steps Me 35 Me CH2 HO Synthesis of Amphidinolide T1 Me O Me O O O Me Me3Si HO O (CH2)4OTBS O Et2O.BF3, CH2Cl2 -78 °C; then warm to 23 °C (-TBS) Me (CH2)4OH Ph Ph Me 40% overall >95:5 dr 1) LDA, LiCl, O (CH2)4I Me Ph Me Me O N OH Ph I2, PPh3, imid O Me Me 2) NaOH, t-BuOH, CH3OH CO2H Ph Me >95:5 dr 65% over 3 steps 36 Me CH2 HO N Synthesis of Amphidinolide T1 Me Me O O O O N 4-PPY Me Me 1) TBSO Me Me Ph O OH DCC, 4-PPY CO2H Ph 2) TBAF 3) Dess-Martin Me 59% over 3 steps Me Ph Me O H Me * O O O Me Ph Ni(COD)2 (20 mol%) Bu3P (40 mol%) * Ph Me HO * * Et3B, toluene, 60 °C X = 0.05 M Ph Me O Me O O Me 44%, >10:1 dr 37 Me CH2 HO Synthesis of Amphidinolide T1 Me O Me O O O Me Me Me Ph Me Me HO O TBSO O O 1) TBSOTf, 2,6-lutidine Me O Ph Me O 2) O3; Me2S O O O Me Me Me Me CH2 HO O 1) CH2I2, Zn, ZrCl4, PbCl2 Me 2) HF.py O O 25% over 4 steps O Me 38 Conclusion Me • Two nickel-catalyzed carbon-carbon bond forming reactions were utilized during the synthesis of Amphidinolide T1: Me CH2 HO • catalytic intermolecular alkyne-epoxide reductive coupling • catalytic intramolecular alkyne-aldehyde reductive coupling O Me O O O • This is the most direct synthesis of Amphidinolide T1 with 20 synthetic operations. Me 39 Aknowledgements Prof Louis Barriault Irina Denissova Steve Arns Effie Sauer Jeff Warrington Roxanne Clément Patrick Ang Louis Morency Rachel Beingessner Gerardo Ulibarri Danny Gauvreau* Ross MacLean* Jermaine Thomas* Roch Lavigne Nathalie Goulet Christiane Grisé Financial Support University of Ottawa NSERC OGS Canada Foundation for Innovation Ontario Innovation Trust Premier’s Research Excellence Award Merck Frosst Canada Astra Zeneca Bristol Myers Squibb Boerhinger Ingelheim 40