Design of a Human Transportation System to Mars

Download Report

Transcript Design of a Human Transportation System to Mars

Comparative Assessment of
Human Missions to Mars
Damon F. Landau
Ph. D. Preliminary Exam
September 13 , 2005
How Shall We Go to Mars?
• Mission Architectures
• Technology Options
9/13/2005
Damon Landau
2
Key Technologies
9/13/2005
Technology
Readiness Level
Chemical Propulsion
System flight proven
Reusable Chemical Propulsion
System flight qualified
Cargo Nuclear Electric Propulsion
Prototype in space
Nuclear Thermal Rocket
Prototype demonstration
In-Situ Propellant Production
Component demonstration
Transfer Vehicle NEP
Component demonstration
Aerocapture
Component demonstration
Mars Launch Vehicle NTR
Component in laboratory
Mars Water Excavation
Proof of concept
Damon Landau
3
Transportation Scenarios
Architecture
Schemata
Direct
Semi-Direct
Stop-Over
M-E Semi-Cycler
E-M Semi-Cycler
Cycler
9/13/2005
Damon Landau
4
Earth-Mars Trajectories
•
•
•
•
Launch years 2009–2022 (seven opportunities).
Transfer TOF 120–270 days.
Approx. 550-day Mars stay time.
Minimize DV for entire mission
(Transfer Vehicle + “Taxi” launch).
taxi
9/13/2005
taxi
transfer
vehicle
Damon Landau
5
Constrained Optimization Problem
min f  DVtaxi  DVTV
subject to:
gieq
TOF  TOFmax 

0

 altmin  alt 
g eq  V  in   V  out   0
Sequential Quadratic Programming (SQP) algorithm
9/13/2005
Damon Landau
6
Direct Trajectories
TOF  180 days
9/13/2005
alt  300 km
Damon Landau
7
Free-Return Trajectory
E1-E3 near 3:2
Earth:spacecraft resonance
9/13/2005
Damon Landau
8
Earth-Mars Semi-Cyclers*
E-M-M-E
M2-M3 near 3:4 resonance
E1-E3 near 3:2 resonance, E3-E4 1:1
resonance, E4-E6 near 3:2 resonance
*Landau,
D. F., and Longuski, J. M., “Mars Exploration via Earth-Mars Semi-Cyclers,”
AAS Paper 05-269, Lake Tahoe, CA, August 7–11, 2005.
9/13/2005
Damon Landau
9
Mars-Earth Semi-Cyclers
M-E-E-M
E2-E3 near 2:1 resonance
9/13/2005
E2-E3 near 2:3 resonance
Damon Landau
E2-E4 1.5 year transfer
10
Cycler Trajectory*
E-M-E
Outbound cycler trajectory with
E1-E3 near 3:2 resonance
and E3-E4 near 1.5 year transfer.
*McConaghy,
T. T., Yam, C. H., Landau, D. F., and Longuski, J. M., “Two-Synodic-Period Earth-Mars Cyclers with
Intermediate Earth Encounter,” AAS Paper 03-509, AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT,
August 4–7, 2003. To appear in the Journal of Spacecraft and Rockets.
9/13/2005
Damon Landau
11
Minimum DV*
Powered Capture
Aero-Assisted Capture
 180 days
 180 days
*Landau,
D. F. and Longuski, J. M., “A Reassessment of Trajectory Options for Human Missions to Mars,”
AIAA Paper 2004-5095, AIAA/AAS Astrodynamics Specialist Conference, Providence, RI, August 16–19, 2004.
9/13/2005
Damon Landau
12
Low-Thrust
DV
m0
e c

, DV  DV  a0 , c, TOF 
D
V
D
V
mpay 1  e c a a c  f e c  1
0
t
2h


Initial Mass, mt
•
•
•
•
•
•
payload = 50 mt
launch V∞=0
arrival V∞=0
a/h = mhardware/Pjet = 10 kg/kW
ft = mtank/mpropellant = 5%
a0 & c optimized for
minimum m0
TOF, days
9/13/2005
Damon Landau
13
The Parking-Orbit Problem
V,D
V, A
Case 1: Perfect Orientation
DVideal
V,D
Case 2: Imperfect Orientation
 2 1
2
 V 
   
r a
rp
 p

9/13/2005
V, A
2

Damon Landau
DV  DVideal  DVadd
14
A Parking-Orbit Solution*
A (hyperbolic half-angle)
V, A
f
V , D
V , D
(without apo-twist)
(after apo-twist)
Departure orbit
(out of plane of page)
Arrival orbit
(in plane of page)
Twist angle,
f
*Landau,
D. F., Longuski, J. M., and Penzo, P. A., “Method for Parking-Orbit Reorientation for Human
Missions to Mars,” Journal of Spacecraft and Rockets, Vol. 42, No. 3, May-June 2005, pp. 517–522.
9/13/2005
Damon Landau
15
Mars Parking Orbit
300 km periapsis  1 day period
J2 and solar perturbations
Ideal
Arrival Date
8/2/2010
7/20/2012
7/16/2014
8/18/2016
10/12/2018
E
9/13/2005
DVD
Stay time DVA
(days)
(km/s) (km/s)
417
0.88
1.17
499
1.64
1.66
585
3.24
1.59
615
3.08
1.22
667
2.06
3.18
M-E
Semi-Cycler
Damon Landau
Apo-Twist
DVadd
(km/s)
0.687
0.604
0.125
0.110
0.093
M
16
Proposed Research
• Hyperbolic Rendezvous
• Ranking of Architectures and Technologies
9/13/2005
Damon Landau
17
Hyperbolic Rendezvous
cycler
M4
taxi
E1-M2
170 days
M2
E3 flyby
E5
E1
E3
gravity assist
9/13/2005
from Mars
Damon Landau
18
Hyperbolic Rendezvous (con’d)
r = 477,000 km
one-day transfer
cycler frame
lunar
orbit
taxi
V∞=5 km/s
one hour before
rendezvous
Earth
cycler
V∞=5 km/s
•
DV from LEO
= 4.30 km/s
9/13/2005
DV = 284 m/s
•
Goal is to develop a rendezvous guidance
algorithm in Hill-Clohessy-Wiltshire frame.
Very little previous work on hyperbolic
rendezvous.
Damon Landau
19
Ranking of Architectures and Technologies
IMLEO Calculation
DV
•
•
•
•
Taxi = 1–3 mt/person
TV = 3–10 mt/person
Cargo = 0–10 mt/person
Consumables = 5 kg/day/person
m
(Impulsive) 0 
mpay
gI sp
e
minert
1
mpropellant
 DV gI sp 
 1
e


DV
m
(LT) 0 
mpay
e
1 e
DV
gI sp
gI sp
mtank  DV gI
a

a0 gI sp 
e

1

2h
mpropellant 

sp
• Rank technologies.
• Rank mission architectures.
• Determine good and bad
combinations.
• Seek best path from early
exploration to settlement.
9/13/2005
Damon Landau
20
Propellant Metric*
Technology Complexity
Trajectory Complexity
1
2
3
4
5
6
7
8
Earth
Mars
HHH
HLL
HHH
HNN
HHM
NNN
HHH
HHH
HHH
HLL
HHH
A
HNN
MMM
I
NNN
HHH W
HHH WTE
Direct
SemiDirect
StopOver
SemiCycler
Reverse
S-C
Cycler
149a
56
124
80
80
21
55
38
71
33
61
43
71
14
52
36
70
29
54
37
67
12
40
30
63
33
51
36
59
12
39
32
61
31
52
36
57
11
38
28
62
36
54
36
55
11
40
30
H=H2, M=CH4, N=NTR, L=Low-Thrust, A=Aerocapture, I=ISPP, TE=Tanker to Earth, W = Mars Water
a Propellant mass per ton landed on Mars’ surface
*Landau,
D. F., and Longuski, J. M., “Comparative Assessment of Human Missions to Mars,” AAS Paper
03-513, AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, August 4–7, 2003.
9/13/2005
Damon Landau
21
Journal and Conference Papers
•
•
•
•
•
•
•
•
•
•
•
Journal Papers
Landau, D. F., Longuski, J. M., and Penzo, P. A., “Method for Parking-Orbit Reorientation for Human
Missions to Mars,” Journal of Spacecraft and Rockets, Vol. 42, No. 3, May-June 2005, pp. 517–522.
Chen, K. J., McConaghy, T. T., Landau, D. F., Longuski, J. M., and Aldrin, B., “Powered Earth-Mars
Cycler with Three Synodic-Period Repeat Time.” To appear in the Journal of Spacecraft and Rockets.
McConaghy, T. T., Landau, D. F., Yam, C. H., and Longuski, J. M., “A Notable Two-Synodic-Period
Earth-Mars Cycler.” To appear in the Journal of Spacecraft and Rockets.
Conference Papers
Chen, K. J., Landau, D. F., McConaghy, T. T., Longuski, J. M., and Aldrin, B., “Preliminary Analysis and
Design of Powered Earth-Mars Cycling Trajectories,” AIAA Paper 2002-4422, AIAA/AAS
Astrodynamics Conference, Monterey, CA, August 2-5 2002.
Chen, K. J., McConaghy, T. T., Landau, D. F., and Longuski, J. M., “A Powered Earth-Mars Cycler with
Three Synodic-Period Repeat Time,” AAS Paper 03-510, AAS/AIAA Astrodynamics Specialist
Conference, Big Sky, MT, August 4–7, 2003.
McConaghy, T. T., Yam, C. H., Landau, D. F., and Longuski, J. M., “Two-Synodic-Period Earth-Mars
Cyclers with Intermediate Earth Encounter,” AAS Paper 03-509, AAS/AIAA Astrodynamics Specialist
Conference, Big Sky, MT, August 4–7, 2003.
Landau, D. F., and Longuski, J. M., “Comparative Assessment of Human Missions to Mars,” AAS Paper
03-513, AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, August 4–7, 2003.
Landau, D. F., Longuski, J. M., and Penzo, P. A., “Parking Orbits for Human Mission to Mars,” AAS
Paper 03-514, AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, August 4–7, 2003.
Landau, D. F. and Longuski, J. M., “A Reassessment of Trajectory Options for Human Missions to
Mars,” AIAA Paper 2004-5095, AIAA/AAS Astrodynamics Specialist Conference, Providence, RI,
August 16–19, 2004.
Landau, D. F., and Longuski, J. M., “Mars Exploration via Earth-Mars Semi-Cyclers,” AAS Paper 05269, Lake Tahoe, CA, August 7–11, 2005.
Okutsu, M., Landau, D. F., and Longuski, J. M., “Low-Thrust Round-Trip Trajectories to Mars with OneSynodic-Period Repeat Time,” AAS Paper 05-395, Lake Tahoe, CA, August 7–11, 2005.
9/13/2005
Damon Landau
22
|P|
Primer Vector
Sub-optimal cycler trajectory
Conditions for Optimality
d
P are continuous.
dt
2. P is aligned with ΔV at impulse times.
|P|
1. P and
9/13/2005
3.
P =1 at impulse times.
4.
P  1 on coasting arcs separating impulses.
5.
d
P  0 at impulses.
dt
Damon Landau
23
Propulsion Systems
9/13/2005
Propulsion System
Isp (sec.)
minert
a
or
mpropellant h
Hydrogen/Oxygen
(H2/O2)
450
0.15
0.10
Methane/Oxygen
(CH4/O2)
380
0.12
0.08
Nuclear (NTR)
900
0.50
0.15
Cargo NEP
8,000
10–30 kg/kW
0.15
Transfer Vehicle
NEP
3,000–5,000
10 kg/kW
0.15
Damon Landau
mtank
mpropellant
24