Transcript Slide 1
Decay studies of exotic nuclei Krzysztof P. Rykaczewski Physics Division, Oak Ridge National Laboratory Oak Ridge, Tennessee exotic nuclei: - fission products of 238U - super heavy nuclei produced in hot fusion It is my first trip to Japan but I had several joint publications with Japanese collaborators before: “Beta decay of 20Mg”, Nucl. Phys. A 584, 509, 1995 with S. Kubono and T. Nakamura GANIL LISE exp in 1991 decay data relevant for the break-out from CNO cycle several papers from 1998 to 2004 with M. Shibata Total Absorption Spectroscopy at GSI ISOL facility performed with M. Nitschke’s (Berkeley) TAS by Warsaw -Valencia-GSI teams “True Gamow-Teller strength distribution around 100Sn and 146Gd” Early work in GANIL on 20Mg triggered the expansion of GSI ISOL program of Gamow-Teller β-transitions studies near 100Sn to fragmentation reactions. It resulted the identification and studies of s-isomers R. Grzywacz et al.,Phys. Lett. B 355, 439,1995; PR C55, 1126, 1997; PRL 81, 766, 1998 R. Grzywacz et al., Phys. Rev.C55, 1126, 1997 R. Grzywacz et al., Phys. Lett. B355, 439, 1995 many results on new and important s-isomers obtained afterwards at GANIL (LISE), GSI (FRS) , NSCL(A1900) and more recently at RIKEN see, e.g., Kameda, Kubo,.. et al, PR C86, 054319, 2012 among motivations of the HRIBF decay studies of fission products : - understanding the evolution of nuclear structure -- single-particle levels around shell gaps -- beta strength function related to the structure of parent and daughter states beta-decay data for the analysis of post r-process isotopic distributions and nuclear fuel cycle - ------ half-lives properties of beta-delayed neutron emission decay heat antineutrino energy spectra (deduced from true β-transition probabilities) low-energy states, isomers ... HRIBF based decay studies of fission products substantially contributed to our understanding of neutron-rich nuclei Holifield Radioactive Ion Beam Facility capable to produce and study nuclei at the neutron-rich and proton-rich limits of nuclear landscape ORIC Tandem IRIS-1 OLTF IRIS-2 RMS isobar separator lasers = Holifield Radioactive Ion Beam Facility at Oak Ridge (1996 - 2012) J.R. Beene et al., J. Phys. G: Nucl. Part. Phys. 38, 024002, 2010 proton-induced fission of 238U creates a lot of neutron-rich nuclei for spectroscopic studies 86Ga: HRIBF: ~10,000/hour at 15 A protons pure beam at the HRIBF ! RIKEN:10/hour at 0.2 pnA 238U (now ~ 5 pnA) Decay studies of fission products at the IRIS-1 and IRIS-2, IRIS-1laser ionization Mass separator M/ΔM ~ 1000 fission fragments ~1011/s ~6 g 238U ORIC : 54 MeV protons 12- 18 A +/-40 keV charge exchange cell (removes Zn, Cd) 0% - 40% efficiency typically 5% efficiency Positive ions +/-160 keV eg~7 % eb ~70% g g b g Tandem accelerator (negative ions only) ~ 10% efficiency g 200 keV LeRIBSS experiment Range out experiment gas cell 2-3 MeV/u C.J.Gross et al., EPJ A25,115,2005 Isobar separator M/DM ~ 10000 Positive or negative ions beam kicker Range out exp gas cell spectra Energy loss b 76Cu no 76Zn !!! 76Ga 76Ge Total ion energy A variety of beam purification methods selective laser ionization two-stage magnetic separation: from molecular beams like A=118 86Ge32S+ to pure “nominal mass A ” ion beam example: new 84-86Ge,84-87As- results Detectors for beta decay studies CARDS β-g at LeRIBSS VANDLE n-TOF array at LeRIBSS Ed Zganjar, LSU 3Hen array after “ranging-out” Hybrid 3Hen-βg array at LeRIBSS Robert Grzywacz, UTK εn~80% 850 liters of 3He at 10 atm εn~30% nearly 80% efficient and segmented 3Hen neutron counter εn~80% ORNL, UTK LSU , Mississippi UNIRIB 850 liters of 3He at 10 atm Detectors for beta decay studies 2200 pounds of NaI(Tl) - Modular Total Absorption Spectrometer (MTAS) and its 12,000 pound shielding January 2012 Decays studied at HRIBF Tandem-OLTF-MTAS are marked by yellow squares. Labels “1” and “2” indicate the priority for decay heat measurements established by the Nuclear Energy Agency (NEA) in 2007 Beta decay of very neutron-rich nuclei is very rich in interesting features neutron detection 3Hen, VANDLE βg and MTAS 22 parent radioactivities in 78Ni region studied by means of βg spectroscopy at the HRIBF 78Ni to 132Sn region (~ 10), + MTAS (22), + VANDLE (29) Z=28 83Se 84Se 85Se 86Se 87Se 88Se 89Se 77As 78As 79As 80As 81As 82As 83As 84As 85As 86As 87As 88As 76Ge 77Ge 78Ge 79Ge 80Ge 81Ge 82Ge 83Ge 84Ge 85Ge 86Ge 87Ge 75Ga 76Ga 77Ga 78Ga 79Ga 80Ga 81Ga 82Ga 83Ga 84Ga 85Ga 86Ga 74Zn 75Zn 76Zn 77Zn 78Zn 79Zn 80Zn 81Zn 82Zn 83Zn 73Cu 74Cu 75Cu 76Cu 77Cu 78Cu 79Cu 80Cu 72Ni 73Ni 74Ni 75Ni 76Ni 77Ni 78Ni 79Ni N=50 79Cu decay (HRIBF LeRIBSS) ~ 2 days exp N=50 81Ga 78Zn 79Zn 81Zn 79Cu 0.29(2) s 78Ni 79Zn ~ 105 pps 79Cu+ ~ 40 pps initial yields : after charge exchange : 79Zn 0.0 pps 79Cu- ~ 2 pps pure beam of 79Cu ions → single neutron-hole states in N=49 79Zn detected 79Cu ions: NSCL 2005 (2010): 754 HRIBF 2006: ~16 000 RIKEN 2010: ~ 10 000 HRIBF 2011: ~158 000 half-life of 79Cu Kratz 1991 : 188(25) ms (multi βn fit) Hosmer 2010 : 257(+ 29,- 26) ms (ion-β) Miller 2013: 290(20) ms (β-g 730 keV) D. Miller, R Grzywacz et al., to be published Beta-delayed neutron emission: counting identified ions → absolute branching ratios HRIBF results pointed to much higher β-delayed neutron branching ratios in comparison to earlier measurements and calculations see, e.g., Pfeiffer, Kratz, Moeller (PKM 2002) Progress in Nucl. Energy, 41, 5 (2002) all βn-precursors given in this plot have T1/2 < 1 s J. Winger et al., PRL 102, 142501 (2009) PRC 80, 054304,2009; PRC 81,044303,2010; PRC 82, 064314 (2010); PRC 83, 014322 (2011); PRC 86, 024307,2012 similar conclusions: P. Hosmer, H. Schatz et al., PR C82 , 025806, 2010 Delayed Neutron Yield following 235U fission Integral β,n measurements used for reactor analysis Delayed neutron yield (n/s/fission) 10-2 10-3 b-n isotopic decay data Note log scales ! ORIGEN is missing data for very short-lived fission products 10-4 10-5 ORIGEN Keepin (IAEA 6 group) 10-6 0.1 1 10 100 Time after fission (s) from Ian C. Gauld, ORNL Reactor Science Group (2010) Example of MTAS data – 139Xe decay (A. Fijałkowska et al., ND2013) (139Xe ~5% cumulative fission yield for nth+ 235U) MTAS data (black) compared to ENDSF-based simulations (red). Lack of β-feeding and following g -energy release from highly excited states in current data base ! MTAS-revised decay of 139Xe average g-energy release increased from 935 keV to 1146 keV (23%) http://www.ornl.gov/sci/casl/ May 2010 : the Department of Energy creates the first nuclear energy innovation hub -- the Consortium for Advanced Simulation of Light Water Reactors (CASL) -- headquartered at Oak Ridge. The first task will be to develop computer models that simulate nuclear power plant operations, forming a "virtual reactor" for the predictive simulations of light water reactors. Other tasks include using computer models to reduce capital and operating costs per unit of energy, safely extending the lifetime of existing U.S. reactor and reducing nuclear waste volume generated by enabling higher fuel burn-ups. We should remember that even the very best simulations of nuclear fuel cycles require correct experimental input data. “Conquering nuclear pandemonium” KR’s Viewpoint in Physics, 3, 94, 2010 (credit to A. Algora et al., PRL 105, 202501, 2010) βg spectroscopy - new beta decays 79Cu, 81,82,83Zn, 85,86Ga, 86Ge, 86,87As ..... molecular beams GeS, AsS 83Ge 84Ge 861ms 484 ms 86As 87As 494 ms 226 ms 85Ge 86Ge 85 ms 81Ga 82Ga 304 ms 81Zn 290 ms 79Cu 78Ni 83Ga 228 ms 82Zn 84Ga 93 ms 85Ga 86Ga 117 ms 83Zn ~ 3 ions/s, April 2012 pure Ga beams from laser ion source and hybrid 3Hen array Departing from β-half-lives of 78Ni into a deformed region 84,85,86Ge and 84,85,86,87As isotopes C. Mazzocchi , KR, et al., → Phys. Rev. C87, 034315, 2013 I.N. Borzov’s DF3a+CQRPA Exp half-lives → β-theory → r-process (HRIBF measurements → I.Borzov’s analysis → R.Surman’s modeling) M. Madurga et al., Phys. Rev. Letters, 109, 112501, 2012 R. Surman 2012 + post r-process abundances experiment FRDM Moeller 2003 DF3a+CQRPA Borzov 2011 simulations with Moeller’sT1/2’s simulations with Borzov’s T1/2’s Evolution of single-particle states beyond N=50 evolution of neutron 3s1/2 vs 2d5/2 states in N=51 isotones (N=58 sub-shell closure) see J. Dobaczewski’s global calculations along N=50 isotones in J. Winger, KR, .. et al., PR C 81, 044303, 2010 (energy of s1/2 Emerging N=58 d5/2-s1/2 subshell ? state dropping down towards d5/2 gs for n-rich nuclei) Neutron states in N=51 isotones, from Z=30 81Zn to Z=50 101Sn 3000 2800 2600 n1g7/2 2400 2200 n3s1/2 2000 n2d5/2 E (keV) 1800 1600 1400 1200 1000 800 600 Darby, Grzywacz et al., PRL 105, 162502,2010 101Sn-103Sn-105Sn ... 400 200 0 -200 28 30 32 34 36 38 40 42 Z al., Padgett , Madurga, Grzywacz et 81Zn decay,PR C82, 064314, 2010 44 46 48 50 52 Interesting experiment for RIKEN: 82Cu β-decay to s1/2 state in N=51 81Zn ( 80,81,82Cu β-decay experiments were accepted at the HRIBF, but ...) T.Ohnishi,T.Kubo .. JPSJ 2010 0.2 pnA 238U 82Cu (4-,5-) Qβ~ 17 MeV T1/2 ~ 60 ms βn Sn~ 5 MeV ~ 0.6 MeV 81Zn s1/2 d5/2 N=51 0+ 82Zn with 100 part*nA of relativistic 238U beam (RIKEN, FRIB ?) we can go for more ambitious study of 80Co βn-decay to the s 79Ni 1/2 excited state in N=51 Beta-delayed multi-neutron emission Decay of N=55 86Ga studied with “hybrid 3Hen” at LeRIBSS in April 2012. Pure and intense beams of 83,85,86Ga isotopes were produced at the IRIS-2 RIB platform using laser ion source RILIS Y. Liu et al., Nucl. Instr. Meth. Phys. Res. B298, 5, 2013. pure beams: 100 pps of 85Ga, ~ 1- 3 pps of 86Ga Summary Decay studies of fission products at the HRIBF created a lot of new and reliable data on fission products decays 1. High energy resolution measurements with pure beams of known intensities (when post accelerated) ranging-out technique and gamma-beta-conversion electron detectors → basic “high energy resolution” decay scheme + bn-branching ratio 2. Measurements with Modular Total Absorption Spectrometer MTAS MTAS energy spectra in segmented array → beta strength within bg-window (decay heat) 3. Measurements involving 3Hen and VANDLE → b-delayed neutrons βn-intensities and βn-energy spectra /Robert Grzywacz/ → beta strength above neutron separation energy Combining high-res g-data, 3Hen, MTAS, VANDLE → determination of a full b-strength function and its consequences → comparison with theory and further development of modeling 2008-2012 LeRIBSS – OLTF (MTAS) HRIBF campaigns ORNL : C.J. Gross, Y. Liu, T. Mendez, K. Miernik, KR , D. Shapira, D. Stracener UT Knoxville : R. Grzywacz, K.C. Goetz, M. Madurga, D. Miller, S. Paulauskas, S. Padgett, L. Cartegni , A. Fijałkowska, M. Al-Shudifat and C.R. Bingham ORAU/ORNL : C. Jost, M. Karny, M. Wolińska-Cichocka Mississippi : J. A. Winger, S. Ilyushkin Louisiana : Ed Zganjar, B.C. Rasco UNIRIB : J.C. Batchelder , S. H. Liu Vanderbilt : N. Brewer, J.H. Hamilton, J.K. Hwang, A. Ramayya, C. Goodin Warszawa : A. Korgul , C. Mazzocchi Kraków : W. Królas IAEA: I. Darby NSCL-MSU: S. Liddick + VANDLE collaboration (talk by R. Grzywacz) theoretical analysis : I.N. Borzov (JIHIR/Dubna/Obninsk), K. Sieja (Strasbourg), R. Surman(NY-JINA) R. Grzywacz (UTK), J. Dobaczewski (Warszawa/Jyväskylä) Studies of Super Heavy Elements ORNL, Oak Ridge ~ 250 mg 252Cf ~ 8 g 254Es J. Roberto et al., workshop on SHE studies at the Dubna SHE Factory College Station, TX, 12-13th March 2013 about 12 mg to 15 mg of actinide material is needed for one SHE target 243Am/244Cm/248Cm seed material and its n-capture/decay path to 249Bk, 252Cf,253,254Es and 257Fm 100 Fm 254 Fm Fm 255 Fm 256 SF 99 98 Cf 249 Cf Es 253 Es , -, EC Cf 250 , (n,f) 97 96 Cm Cm 242 Cm 243 Cm 244 , (n,f) 95 94 Pu Pu 238 Am Pu 239 , (n,f) Z 93 Np N Np 237 Np 238 Am 241 Am 242 Pu 241 -, (n,f) Cm 245 Cm 246 , (n,f) Am 243 -, EC Pu 240 Bk 249 Bk Am 244 - Pu 242 Pu 243 - Am 245 Pu 244 Cm 247 Cm 248 , (n,f) , SF Am 246 Pu 245 - Es 254 Pu 246 - Cf 251 Cf 252 , (n,f) ,, SF Bk 250 Bk 251 Cm 249 - Cm 250 SF Cf 253 -, (n,f) Es 255 Cf 254 SF Fm 257 2012 – a very good year for SHE studies ! see 278113 among the “Inventions of the year 2012” according to Time magazine (most experiments were performed with ORNL-made actinide target materials) 16 (+1 TASCA) (+1 TASCA) (+25 TASCA) (+1 TASCA) Yu.Ts. Oganessian et al., PRL 104, 142501, 2010; PRL 108, 022502, 2012; PRL 109, 162501, 2012; PR C 87, 014302, 2013 and submitted to PR C. new experiments at SHIP (GSI Darmstadt) • 248Cm+54Cr, 33 out of 140 days, April-May 2011 (also 2012), beam dose ~5*1018 - search for isotopes of new element Z=120, 298,299(120)178,179 (T1/2 ~ 3 s) - expected short -decay half-life required ORNL/UTK fast digital electronics - cross section limit of about 560 femtobarn reached at ~ 400 pnA beam current GSI Annual Report 2011 (2012) SHIP analog data acquisition dead time ~ 11 s recoil UTK Digital Signal Processing Laboratory recoil dead time ~ 0.3 s New ORNL-UTK detectors and digital data acquisition system (similar DAQ at SHIP Z=120 exp was serving PSSD+Si-box+MCPs) MICRON detectors 128 x48 mm,1 mm strips 300m DSSD 500 m single Si-veto matching DSSD design six 120 x 65 mm single Si 300 m Si-box MESYTEC lin-log preamps ISEG NIM HV XIA Pixie16 rev D (208 channels) Dell Power Edge LF 250 flange Preparations for experiment searching for 293(118), 295(118) and 296(118) isotopes with ORNL’s mixed-Cf target , new ORNL/UTK detection system and 48Ca beam at Dubna. (50% of 249Cf, 35% of 251Cf and 15% of 250Cf and very low content of 252Cf) Experiment with 48Ca beam and 240Pu ORNL target material at Dubna TSF ~10-100 s ? Staszczak, Baran, Nazarewicz; Phys. Rev. C 87, 024320, 2013 Spontaneous fission modes and lifetimes of superheavy nuclei in the nuclear density functional theory only even-even nuclei plotted here 284Fl (4n,240Pu) ? 296118 (3n,251Cf) Summary for the SHE section: 1. Impressive SHE harvest in 2012 at JINR , GSI and RIKEN ! 2. ORNL-made actinide materials are used to make “SHE targets”. New mixed-Cf target can help to reach the heaviest atomic nuclei, the isotopes of element 118 3. Digital data acquisition system, initially developed for the studies of s- proton emitters at the HRIBF RMS (R. Grzywacz et al., UTK Digital Pulse Processing Laboratory), continues to be a system of choice in other experiments including the synthesis of super-heavy nuclei and fragmentation-based spectroscopy. 4. Experiment s on new short-lived super heavy nuclei with 48Ca beam (44Ca, 40Ca) and 240Pu (239Pu, 245Cm, 248Cm..) can help to connect nuclear mainland to the “Hot Fusion Island” and provide important data on fission/alpha competition.