Transcript Brief History of Nuclear Physics
Brief History of Nuclear Physics
1896 - Henri Becquerel (1852-1908) discovered radioactivity 1911 - Ernest Rutherford (1871-1937), Hanz Geiger (1882-1945) and Ernest Marsden (1888-1970) conducted scattering of alpha particles on nuclei 1930 - John D. Cocroft (1897-1967) and Ernest T.S. Walton (1903 1995) conducted the first artificial nuclear reaction 1932 - James Chadwick (1891-1974) discovered the neutron 1933 - Frederick Joliot (1900-1958) and Irene Joliot-Curie (1897 1956) synthesized artificial elements 1938 - discovery of nuclear fission by Otto Hahn (1879-1968) and Fritz Strassman (1902-1980) 1942 - Enrico Fermi (1901-1954) builds a fission reactor
Properties of nuclei
4 He 2
Mass Number A
- number of nuclei
Atomic Number Z
- number of protons (charge, element)
Neutron Number N
- number of neutrons
A nucleus is represented by symbol:
A Z
X
Elements with different numbers of neutrons are called
isotopes
.
relativistic energy & relativistic momentum
relativistic mass: relativistic energy: m m 0 1 v 2 c 2 m 0 E = mc 2 m 0 c 2 m 0 v 2 2 ...
relativistic momentum: p = mv energy – momentum relation: E 2 p 2 c 2 m 2 0 c 4
attributes of selected particles
proton neutron electron positron photon neutrino kg 1.67262
10 -27 1.67493
10 -27 9.1094 10 -31 9.1094 10 -31 0 0 mass a.u.
1.007276
1.008665
0.0005486
0.0005486
0 0 MeV/c 2 938.28
939.57
0.510999
0.510999
0 0 charge spin e 0 -e e 0 0 ½ ½ ½ ½ 0 ½
the spin
Spin – angular momentum like quantity responsible for the magnetic moment of particles.
z
quantum numbers: • spin quantum number I - the magnitude of the spin is S I I 1 • magnetic quantum number m I - the z component of the spin is = -I, …. I S z m I 3 2 1 2 1 2 3 2
Nucleus size and shape
Rutherford’s experiment m Ze 2e d d 4 kZe 2 mv 2 Conclusion: r r 0 A 1 3 where r 0 = 1.2 fm
Nuclear Stability
Coulomb interaction - repulsive Nuclear interaction - attractive
line of stability
magic numbers (very stable nuclei):
Z, N = 2, 8, 20, …
Binding Energy
The total (relativistic) energy of a nucleus is always less than the combined energy of the separated nucleons.
The difference E b (MeV) = ( Zm p + Zm n - M A ) · 931.491 MeV/a.u.
is called the binding energy of the nucleus.
Example (alpha particle): E b = (2 · 1.0073au + 2 · 1.0087au – 4.0026au) · 931.491 MeV/au
27.4 MeV
Fission and Fusion
9 8 7 6 5 4 3 2 1 0 region of greatest stability 50 100 150 mass number 200 250
Fission
– heavy nuclei (A>60) split releasing energy
Fusion
– light nuclei (A<60) combine releasing energy
Radioactivity
- spontaneous emission of radiation resulting from disintegration (decay) of unstable nuclei.
Types of radioactive decay: lead shield radioactive source
+ - positrons - alpha particles - high energy photons -
photographic plate
- electrons
Activity – the decay rate
The number of disintegrated nuclei in a unit time is proportional to the number of radioactive nuclei in the source.
dN N dt – the decay constant Hence N N 0 e t N 0 – initial number of radioactive nuclei Activity: R dN dt R 0 e t R 0 – initial activity units: 1 Bq 1 1 s (becquerel), 1Ci = 3.7 · 10 10 Bq (curie)
Half – life time
The decay constant can be expressed in terms of time T ½ , in which activity (the number of radioactive nuclei) decreases by a factor of two.
N 1 2 N 0 N 0 e T 1 2 N 0 T 1 2 ln 2 1 2 N 0 1 4 N 0 t 0 T 1 2 2 T 1 2