Transcript Document
HerCULES Paul van der Werf Leiden Observatory Lorentz Centre February 28, 2012 Introducing HerCULES Herschel Comprehensive (U)LIRG Emission Survey Open Time Key Program on the Herschel satellite HerCULES 2 Who is HerCULES? Paul van der Werf (Leiden; PI) Susanne Aalto (Onsala) Lee Armus (Spitzer SC) Vassilis Charmandaris (Crete) Kalliopi Dasyra (CEA) Aaron Evans (Charlottesville) Jackie Fischer (NRL) Yu Gao (Purple Mountain) Eduardo González-Alfonso (Henares) Thomas Greve (Copenhagen) Rolf Güsten (MPIfR) Andy Harris (U Maryland) Chris Henkel (MPIfR) Kate Isaak (ESA) Frank Israel (Leiden) Carsten Kramer (IRAM) Edo Loenen (Leiden) Steve Lord (NASA Herschel SC) HerCULES Jesus Martín-Pintado (Madrid) Joe Mazzarella (IPAC) Rowin Meijerink (Leiden) David Naylor (Lethbridge) Padelis Papadopoulos (Bonn) Dave Sanders (U Hawaii) Giorgio Savini (Cardiff/UCL) Howard Smith (CfA) Marco Spaans (Groningen) Luigi Spinoglio (Rome) Gordon Stacey (Cornell) Sylvain Veilleux (U Maryland) Cat Vlahakis (Leiden/Santiago) Fabian Walter (MPIA) Axel Weiß (MPIfR) Martina Wiedner (Paris) Manolis Xilouris (Athens) 3 Conditions in ULIRGs Starbursts cannot be simply scaled up. More intense starbursts are also more efficient with their fuel. ULIRGs : LFIR M H2 LIR/LCO SFR/MH2 1 100 L M SFE Milky W ay : 1.5 L M 1 Galact ic GMCs : 1.8 L M 1 OMC - 1 : 54 L M 1 Orion BN - KL : HerCULES (Gao & Solomon 2001) LIR SFR 400 L M 1 4 (U)LIRGs (LIR>10(11)12 L) (Evans et al.) HerCULES 5 (U)LIRGs from low to high z (Magnelli et al. 2011) LIRGs dominate cosmic star formation at high redshift HerCULES 6 ISM in luminous high-z galaxies (Danielson et al. 2010) (Weiß et al. 2007) Even in ALMA era, limited spatial resolution on high-z galaxies. For unresolved galaxies, multi-line spectroscopy will be a key diagnostic HerCULES 7 HerCULES in a nutshell HerCULES will uniformly and statistically measure the neutral gas cooling lines in a flux-limited sample of 29 (U)LIRGs. Sample: all IRAS RBGS ULIRGs with S60 > 12.19 Jy (6 sources) all IRAS RBGS LIRGs with S60 > 16.8 Jy (23 sources) Observations: SPIRE/FTS full high-resolution scans: 200 to 670 m at R ≈ 600, covering CO 4—3 to 13—12 and [CI] + any other bright lines PACS line scans of [CII] and both [OI] lines All targets observed to same (expected) S/N Extended sources observed at several positions HerCULES 8 HerCULES sample Target log(LIR/L) Target log(LIR/L) IC 4687/4686 11.55 Mrk 231 12.51 NGC 2623 11.54 IRAS F17207—0014 12.39 NGC 34 11.44 IRAS 13120—5453 12.26 MCG+12—02—001 11.44 Arp 220 12.21 Mrk 331 11.41 Mrk 273 12.14 IRAS 13242—5713 11.34 IRAS F05189—2524 12.11 NGC 7771 11.34 Arp 299 11.88 Zw 049.057 11.27 NGC 6240 11.85 NGC 1068 11.27 IRAS F18293—3413 11.81 NGC 5135 11.17 Arp 193 11.67 IRAS F11506—3851 11.10 IC 1623 11.65 NGC 4418 11.08 NGC 1614 11.60 NGC 2146 11.07 NGC 7469 11.59 NGC 7552 11.03 NGC 3256 11.56 NGC 1365 11.00 HerCULES 9 Mrk231 At z=0.042, one of the closest QSOs (DL=192 Mpc) With LIR = 41012 L , the most luminous ULIRG in the IRAS Revised bright Galaxy Sample “Warm” infrared colours Star-forming disk (~500 pc radius) + absorbed X-ray nucleus Face-on molecular disk, MH2 ~ 5109 M HST/ACS (Evans et al., 2008) HerCULES 10 Warning: may contain... quiescent molecular (and atomic) gas star-forming molecular gas (PDRs) AGN (X-ray) excited gas (XDRs) cosmic ray heated gas shocks mechanically (dissipation of turbulence) heated gas warm very obcured gas (hot cores) HerCULES 11 Mrk231 SPIRE FTS (Van der Werf et al., 2010) HerCULES 12 Mrk231 SPIRE FTS HerCULES 13 Mrk231 SPIRE FTS HerCULES 14 Mrk231 SPIRE FTS HerCULES 15 Mrk231 SPIRE FTS HerCULES 16 Mrk231 SPIRE FTS HerCULES 17 Mrk231 SPIRE FTS HerCULES 18 CO excitation 2 PDRs + XDR 6.4:1:4.0 n=104.2, FX=28* n=103.5, G0=102.0 n=105.0, G0=103.5 * 28 erg cm-2 s-1 G0=104.2 HerCULES 19 CO excitation 3 PDRs 6.4:1:0.03 n=106.5, G0=105.0 n=103.5, G0=102.0 n=105.0, G0=103.5 HerCULES 20 High-J lines: PDR or XDR? High-J CO lines can also be produced by PDR with n=106.5 cm—3 and G0=105, containing half the molecular gas mass. Does this work? G0=105 only out to 0.3 pc from O5 star; then we must have half of the molecular gas and dust in 0.7% of volume. With G0=105, 50% of the dust mass would be at 170K, which is ruled out by the Spectral Energy Distribution [OH+] and [H2O+] > 10—9 in dense gas requires efficient and penetrative source of ionization; PDR abundances factor 100— 1000 lower Only XDR model works! HerCULES 21 Analysis of analysis Model not unique At least 9 free parameters, not really a proper fit Reasonable, based on prior knowledge External constraints available for all 3 components ... but what if we did not have this prior knowledge? role of H2O role of shocks role of OH+ HerCULES 22 Modeling-free result Highly excited CO ladders are found in all high luminosity/compact sources with an energetically dominant AGN (and only in those sources). HerCULES 23 Water in molecular clouds H2O ice abundant in molecular clouds Can be released into the gas phase by UV photons, X-rays, cosmic rays, shocks,... Can be formed directly in the gas phase in warm molecular gas Abundant, many strong transitions expected to be major coolant of warm, dense molecular gas Herschel image of (part of) the Rosetta Molecular Cloud HerCULES 24 H2O in HerCULES Target log(LIR/L) Target log(LIR/L) IC 4687/4686 11.55 Mrk 231 12.51 NGC 2623 11.54 IRAS F17207—0014 12.39 NGC 34 11.44 IRAS 13120—5453 12.26 MCG+12—02—001 11.44 Arp 220 12.21 Mrk 331 11.41 Mrk 273 12.14 IRAS 13242—5713 11.34 IRAS F05189—2524 12.11 NGC 7771 11.34 Arp 299 11.88 Zw 049.057 11.27 NGC 6240 11.85 NGC 5135 11.17 IRAS F18293—3413 11.81 IRAS F11506—3851 11.10 Arp 193 11.67 NGC 4418 11.08 IC 1623 11.65 NGC 2146 11.07 NGC 1614 11.60 NGC 7552 11.03 NGC 7469 11.59 NGC 1365 11.00 NGC 3256 11.56 HerCULES red = wet 25 H2O lines in Mrk231 Low lines: pumping by cool component + some collisional excitation High lines: pumping by warm component Radiative pumping dominates and reveals an infrared-opaque (100m ~ 1) disk. (González-Alfonso et al., 2010) HerCULES 26 Lessons from H2O (1 + 2 + 3 + 4) 1) In spite of high luminosities, H2O lines are unimportant for cooling the warm molecular gas. 2) Radiatively H2O lines reveal extended infrared-opaque circumnuclear gas disks. 3) Extinction and radiative pumping of highest CO lines. 4) Detection of H2O lines implies high FIR radiation field, but not the presence of an AGN. HerCULES 27 Lessons from H2O (5) Radiation pressure from the strong IR radiation field: Prad 100T / c 4 d Since both 100 and Td are high, radiation pressure dominates the gas dynamics in the circumnuclear disk. 5) Conditions in the circumnuclear molecular disk are Eddington-limited. HerCULES 28 Mechanical feedback Radiation pressure can drive the observed molecular outflows (e.g., Murray et al., 2005) Aalto et al., 2012: flow prominent in HCN dense gas Key process in linking ULIRGs and QSOs? (Fischer et al., 2010) Shocks probably of minor importance in Mrk231 HerCULES (Feruglio et al., 2010) 29 NGC6240: CO lines as tracers of what? X-ray nuclei AGNs? PAH emission PDRs? H2 lines shocks! HerCULES NB: FTS shows 12CO/13CO > 50 ! Optically thin CO lines 30 NGC253: shocks or PDRs? chemistry shocks? H2 lines PDRs! SINFONI H2 v=10 S(1), Rosenberg et al., in prep. HerCULES 31 NGC7469 SPIRE FTS: CO ladder suggests PDR? HerCULES 32 NGC7469 SPIRE FTS: OH+ suggests XDR? HerCULES 33 NGC7469 SPIRE FTS: OH+ suggests XDR? But no H2O+... HerCULES 34 High-z connection (1): H2O at z=3.9 Van der Werf et al., 2011 Line ratios similar to Mrk231 FIR pumping dominates, implies 100 m-opaque disk Radiation pressure dominates, Eddington-limited HerCULES 35