Wind turbine design according to Betz and Schmitz

Download Report

Transcript Wind turbine design according to Betz and Schmitz

1
Wind turbine design according
to Betz and Schmitz
2
Energy and power from the wind
• Power output from
wind turbines:
A
3
v
Power    A  cp
2
• Energy production
from wind turbines:
Energy  Power  Time
v
3
Stream Tube
V
4
Extracted Energy and Power




1
2
2
E ex   m  v1  v 3
2
2
2
E  1  m

 v1  v 3
ex
2
Where:
E• ex = Extracted Energy
Eex = Extracted Power
m = Mass
•
m = Mass flow rate
v = Velocity
[J]
[W]
[kg]
[kg/s]
[m/s]
5
Extracted Energy and Power
• If the wind was not retarded, no power would be extracted
• If the retardation stops the mass flow rate, no power would be
extracted
• There must be a value of v3 for a maximum power extraction
6
Extracted Energy and Power
• The retardation of
the wind cause a
pressure difference
over the wind
turbine
p  p2  p2
7
We assume the following:
•
There is a higher pressure right upstream the turbine (p-2) than the
surrounding atmospheric pressure
•
There is a lower pressure right downstream the turbine (p+2) than the
surrounding atmospheric pressure
•
Since the velocity is theoretically the same both upstream and downstream
the turbine, the energy potential lies in the differential pressure.
•
The cross sections 1 and 3 are so far away from the turbine that the
pressures are the same
A3
A2
A1
8
Continuity
(We assume incompressible flow)
  v1  A1    v2  A2    v3  A3
A3
A2
A1
9
Balance of forces:
(Newton's 2. law)
Because of the differential pressure over the
turbine, it is now a force F = (p-2 – p+2)∙A2 acting
on the swept area of the turbine.
A3
A2
A1
F   v1  A1  v1  (p2  p2 )  A2   v3  A3  v3
Impulse force
Pressure force
Impulse force
10
Energy flux over the wind turbine:
(We assume incompressible flow)

 v12
  v32
E      v1  A1  p1  v1  A1       v3  A 3  p3  v3  A 3 
 2
  2

v1  A1  v2  A2  v3  A3

v32
    v3  A 3
2
v12
E     v1  A1
2
A3
A2
A1
p1  p3
11
Energy flux over the wind turbine:
(We assume incompressible flow)
 v22

 v22

E     v2  A 2  p 2  v 2  A 2      v 2  A 2  p 2  v 2  A 2 
 2

 2


E  v 2  A 2   p 2  p 2 
A3
A2
A1
12
Energy flux over the wind turbine:
(We assume incompressible flow)
E  v2  A 2   p 2  p 2 
A3
A2
A1
v32
v12
   v1  A1    v3  A3
2
2
13
Continuity:
  v1  A1    v2  A2    v3  A3
Balance of forces:
 v1  A1  v1  (p2  p2 )  A2   v3  A3  v3
Energy flux:
v32
v12
v2  A 2   p2  p2     v1  A1    v3  A3
2
2
If we substitute the pressure term; (p-2-p+2) from the equation for the balance of
forces in to the equation for the energy flux, and at the same time use the continuity
equation to change the area terms; A1 and A3 with A2 i we can find an equation for
the velocity v2:
v32
v12
   v1  A1     v3  A3  v 2     v12  A1    v32  A3 
2
2

v12
   v2  A 2
2

v32
    v2  A 2
2
1
  v12  v32   v 2   v1  v3  
2
   v 22  A 2   v1  v3 
v  v3
1
  v1  v3    v1  v3    v 2  1
2
2
14
Power Coefficient
Rankine-Froude theorem
We define the Power Coefficient: cp
v32
v12
  v1  A1    v3  A3
2
2

2
v1
  v1  A
2
In the following, we assume that the velocity v3 can be
expressed as v3=x·v1, where x is a constant.
v3  x  v1
We substitute:
From continuity:
A1  v2 
A2
v1
A2
A3  v 2 
v3
 A1 
v1  v3 A 2 A 2 v1  v3 A 2




 1  x 
2
v1
2
v1
2
v1  v3 A 2 A 2 v1  v3 A 2  1  A 2  1  x 
 A3 




   1 


2
v3
2
v3
2 x  2  x 
15
Power Coefficient
Rankine-Froude theorem
We insert the expressions for A1 and A3 in to the equation for the power coefficient.
We will end up with the following equation:
v32
v12
   v1  A1     v3  A3
2
2
cp 
2
v
  1  v1  A 2
2

cp

v12  v1  A1  v32  v3  A 3
v12  v1  A 2
v
 v32  v1  A1

v12
v1  A 2
2
1


cp
cp
 v12 v32  A1
  2  2 
 v1 v1  A 2



1
 1  x  x 2  x 3 
2
1  x   A1
2
2

A2
 1  x 
2
16
Maximum Power Coefficient
Rankine-Froude theorem
cp
x


3
 x 2  x  1
2
Maximum power coefficient:
cp
x
3  x

0
2
 2  x  1
2

x  1
cpmax
x 1

3
3
2

 1  1  1 1
3
3
3
32


 0,59
2
54
17
Power Coefficient
18
The Betz Power
19
Thrust

1
1
2
2
2
2
T  m   v3  v1     A 2   v1  v3     A 2  v1   x  v1 
2
2

1
1
2
2
T    A 2  v1  1  x     A 2  v12  cT
2
2
At maximum power coefficient we
have the relation: x =1/3
1 8
cT  1  x  1  
9 9
2
v2

T
20
Example
Find the thrust on a wind
turbine with the following
specifications:
v1 =
D =
cT =
20 m/s
100 m
8/9
1
 D
2
2
T    A 2  v1  cT  
 v1  cT
2
2 4
2
1, 2  100
2 8
T

 20   1676,5 kN
2
4
9
2