Transcript Slide 1

Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune

Density Matrix Tomography (1-qubit)

 =

1/2 1/2

+ 

P C = R+iS -P

Background Does not lead to signal Deviation May lead to signal  = ħ  / kT ~ 10 -5 M x

~

M y

Density Matrix Tomography (1-qubit)

 =

P C = R+iS -P

(  /2) y NMR detection operators:  x ,  y 1. Heterodyne detection  x  = 2R  y  = -2S  1 =

- R P+iS R

2. Apply (  /2) y + Heterodyne detection  x  = 2P M x

~

M y

Density Matrix Tomography (2-qubit) P0 P1 P2

+

R1 R2 R3 R4 R5 R6

+

I1 I2 I4 I3 I5 I6

15 REAL NUMBERS NMR detection operators:  x 1 ,  y 1 ,  x 2 ,  y 2

Density Matrix Tomography (2-qubit) P0 P1 P2

+

R1 R2 R4 R3 R5 R6

+

I1 I2 I4 I3 I5 I6

15 REAL NUMBERS Traditional Method :

Spin 1

I 90 x I 90 y I 90 x 90 x 90 y 90 y

Spin 2

I I 90 x I 90 y 90 x 90 y 90 x 90 y Requires 1. Spin selective pulses 2. Integration of Transition

Density Matrix Tomography (2-qubit) P0 P1 P2

+

R1 R2 R4 R3 R5 R6

+

I1 I2 I4 I3 I5 I6

15 REAL NUMBERS Traditional Method :

Spin 1

I 90 x I 90 y I 90 x 90 x 90 y 90 y

Spin 2

I I 90 x I 90 y 90 x 90 y 90 x 90 y Requires 1. Spin selective pulses 2. Integration of Transition

Density Matrix Tomography (2-qubit) P0 P1 P2

+

R1 R2 R4 R3 R5 R6

+

I1 I2 I4 I3 I5 I6

15 REAL NUMBERS

NEW Method

Requires 1. No spin selective pulses 2. Integration of spins JMR, 2010

Density Matrix Tomography (2-qubit)

 tomo SVD

Density Matrix Tomography of singlet state Real Imag Theory Expt [tr( tr(

th

 

exp )

th 2 ) tr(

exp 2 )] 1/2

JMR, 2010

Quantum Contextuality

1.

Non- Contextuality

The result of the measurement of an operator A depends solely on A and on the system being measured.

2.

If operators A and B commute, the result of a measurement of their product AB is the product of the results of separate measurements of A and of B.

All classical systems are NON-CONTEXTUAL Physics Letters A (1990), 151, 107-108

Non- Contextuality

 Measurement outcomes can be assigned, in principle, even before the measurement

Quantum Contextuality

 Measurement outcomes can not be pre-assigned even in principle Eg. Two spin-1/2 particles  z 1  x 2  z 1  x 2    x 1 z x  1 2 z 2  z 1  z 2  x 1  x 2  y 1  y 2

1 1 1 1 1 -1

= 6 LHVT QM N. D. Mermin. PRL 65, 3373 (1990).

PRL 101,210401(2008)

Laflamme, PRL 2010

NMR demonstration of contextuality

Sample: Malonic acid single crystal ~ 5.3

Laflamme PRL 2010

Peres Contextuality

Let us consider a system of two spin half particles in singlet state.

Singlet state :   01  10 2 Physics Letters A (1990), 151, 107-108

Peres Contextuality

For a singlet state < σ x 1 σ x 2 > = -1 < (σ x 1 σ y 2 < σ y 1 σ y 2 )(σ y 1 > = -1 σ x 2 )> = -1 Note: [σ x 1 ,σ x 2 ] = 0 [σ y 1 ,σ y 2 ] = 0 [σ x 1 σ y 2 , σ y 1 σ x 2 ] = 0 Physics Letters A (1990), 151, 107-108

Peres Contextuality

For a singlet state Pre-assignment of eigenvalues < (σ x 1 < σ < σ x y 1 1 σ y 2 )(σ y 1 σ σ σ x y x 2 2 2 > = -1  > = -1  )> = -1  x x y 1 1 1 x y y 2 2 2 = -1 y = -1 1 x 2 = -1 CONTRADICTION !!

Note: [σ x 1 ,σ x 2 ] = 0 [σ y 1 ,σ y 2 ] = 0 [σ x 1 σ y 2 , σ y 1 σ x 2 ] = 0 Physics Letters A (1990), 151, 107-108

Experiment

 Using three F spins of Iodotrifluoroethylene. Two were used to prepare singlet and one was ancilla.

Pseudo-singlet state

 Pure singlet state is hard to prepare in NMR I z 1 +I z 2 +I z 3   01  10  0 2   (1  ) 1 8   000 000   (1  ) 1 8    

Pseudo-singlet state

 Pure singlet state is hard to prepare in NMR I z 1 +I z 2 +I z 3   01  10  0 2   (1  ) 1 8   000 000 No Signal !!

<σ x 1 +σ x 2 >=0   (1  ) 1 8    

Pseudo-singlet state

  (1  ) 1 8    Real Part  Imaginary Part Theory Fidelity=0.97

Experiment

Moussa Protocol

Target (ρ) A B Probe(ancilla)|+  Target (ρ) A B Physical Review Letters (2010), 104, 160501

NMR circuit for Moussa Protocol

<σ x >=< AB> 1 (Ancilla)

|+

 2

P P S Singlet A B

3

Results

Manvendra Sharma, 2012

Future Architectures ?

Criteria for Physical Realization of QIP 1. Scalable physical system with mapping of qubits 2. A method to initialize the system 3. Big decoherence time to gate time 4. Sufficient control of the system via time-dependent Hamiltonians (availability of a universal set of gates).

5. Efficient measurement of qubits DiVincenzo, Phys. Rev. A 1998

 xx - qubits

NMR Circuits - Future

Time Decoherence Qubits Larger Quantum register

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .

.

.

• • • Addressability Week coupling Controllability Transverse relaxation Loss of q. memory 

|00

+

b

|11

{|00

, |11

}

T2

<

Longitudinal relaxation Loss of c. memory

|0110010

|000000

 T1

Liquid-state NMR systems

 Advantages  High resolution  Slow decoherence  Ease of control  Disadvantages o Smaller resonance dispersion o Small indirect (J) couplings o Smaller quantum register Random, isotropic tumbling

Single-crystal NMR systems

 Advantages  Large dipole-dipole couplings ( > 100 times J)  Orientation dependent Hamiltonian  Longer longitudinal relaxation time  Larger quantum register (???)  Disadvantages o Shorter transverse relaxation time o Challenging to control the spin dynamics

Single-crystal NMR systems

 Active spins in a bath of inactive molecules J. Baugh, PRA 2006 • Large couplings • High resolution • Hopefully – Larger quantum register

Malonic Acid QIP with Single Crystals Cory et al, Phys. Rev. A 73, 022305 (2006) Two-molecules per unit center: Inversion symmetry – P1 space group So, the two molecules are magnetically equivalent Inter-molecular interactions ?

QIP with Single Crystals Malonic Acid Natural Abundance Cory et al, Phys. Rev. A 73, 022305 (2006)

Pseudopure States Malonic Acid Cory et al, Phys. Rev. A 73, 022305 (2006)

Pseudopure States Malonic Acid Cory et al, Phys. Rev. A 73, 022305 (2006)

Quantum Gates Eg. C 2 -NOT Cory et al, Phys. Rev. A 73, 022305 (2006)

~ 5.3

R. Laflamme, PRL 2010

Glycine Single Crystal Mueller, JCP 2003 000 PPS

Floquet Register More coupled Nuclear Spins More qubits More Resolved Transitions Side-bands?

S. Ding, C. A. McDowell, … M. Liu, quant-ph/0110014

S. Ding, C. A. McDowell, … M. Liu, quant-ph/0110014

Solid-State NMR and next generation QIP Pseudo-Pure States 13 C spectra of aromatic carbons of Hexamethylbenzene spinning at 3.5 kHz

Grover’s Algorithm Methyl 13 C S. Ding, C. A. McDowell, … M. Liu, quant-ph/0110014

Electron Spin vs Nuclear Spin

Spin e n Magnetic moment 10 3 1 Sensitivity High Low Coherence Time 1 10 3 Measurement Processing

e-n Entanglement Entanglement in a solid-state spin ensemble •

Stephanie Simmons et al

Nature 2011

Mehring, 2004

Electron spin actuators

Cory et al

Detection of single Electron Spin

by Magnetic Resonance Force Microscopy D. Rugar, R. Budakian, H. J. Mamin & B. W. Chui Nature 329, 430 (2004)

Cooling of nuclear spins

eq =



e



e

 

I

N U p = SWAP (e,n 1 ) I e

 

1



1

 

I

(N-1) Measure e-spin If



e

invert



e



e

  

1



1

 

I

(N-1) U p = SWAP (e,n 2 ) Cory et al, PRA 07

Anisotropic Hyperfine Interaction

Nuclear Local Fields under Anisotropic Hyperfine Interaction e-n system B 0

Anisotropic Hyperfine Interaction

Coherent oscillations between nuclear coherence on levels 1 & 2 driven by Microwave The nuclear  pulse : 520 ns e-n CNOT gate : 2 m s (0.98 Fidelity)