Transcript Document
SKF Experience with Extreme Value Analysis Presented to 4th Conference on Extreme Value Analysis, Gothenburg Presented by Aidan Kerrigan 2005-08-16 2015-07-17 ©SKF Slide 2 [Code] SKF [Organisation] 1 ASTM E2283-03 on 52100 bearing steel 2015-07-17 ©SKF Slide 3 [Code] SKF [Organisation] Cleanliness assessment of modern bearing steels Heat Sulphur Aluminium Titanium Oxygen A 0.006 % 0.029 % 18 ppm 6 ppm B 0.011 % 0.024 % 26 ppm 6 ppm Established metallographic methods do not differentiate for very clean steels Established metallographic methods do not facilitate bearing life modelling 2015-07-17 ©SKF Slide 4 [Code] SKF [Organisation] ASTM E2283 EVA methodology x6 E3 Table 6 Hardened Specimens 2015-07-17 ©SKF Slide 5 [Code] SKF [Organisation] Complex oxysulphide in an application ‘D’-type globular inclusions, < 3:1 2015-07-17 ©SKF Slide 6 [Code] SKF [Organisation] EVA methodology Mean = Sdev = Length (Y) Data 15.1 15.3 15.8 16.4 16.5 17.5 18.3 19.1 19.6 19.8 20.4 20.6 21.1 22 23.4 23.4 23.8 24 24.5 27.2 28.3 33.1 44.3 47.6 23.213 8.277 Moments Method Delta = 6.45 Lambda = 19.49 Rank ProbabilityRed. Var. (X) RV 1 0.04 -1.169 2 0.08 -0.927 3 0.12 -0.752 4 0.16 -0.606 5 0.20 -0.476 6 0.24 -0.356 7 0.28 -0.241 8 0.32 -0.131 9 0.36 -0.021 10 0.40 0.087 11 0.44 0.197 12 0.48 0.309 13 0.52 0.425 14 0.56 0.545 15 0.60 0.672 16 0.64 0.807 17 0.68 0.953 18 0.72 1.113 19 0.76 1.293 20 0.80 1.500 21 0.84 1.747 22 0.88 2.057 23 0.92 2.484 24 0.96 3.199 0.999 6.91 Ln ( f (x,, )) -3.287 -3.221 -3.075 -2.931 -2.910 -2.744 -2.660 -2.613 -2.599 -2.597 -2.601 -2.605 -2.622 -2.672 -2.792 -2.792 -2.835 -2.857 -2.916 -3.295 -3.472 -4.329 -6.535 -7.200 SUM (LL) = -78.159 2015-07-17 ©SKF Slide 7 [Code] SKF [Organisation] Max. Likelihood Lambda 19.955 Delta 4.937 X X 14.18 15.38 16.24 16.96 17.61 18.20 18.76 19.31 19.85 20.39 20.93 21.48 22.05 22.65 23.27 23.94 24.66 25.45 26.34 27.36 28.58 30.11 32.22 35.75 54.07 Solver X low X_low 11.9 13.2 14.2 14.9 15.6 16.2 16.7 17.2 17.7 18.2 18.7 19.2 19.6 20.1 20.6 21.1 21.7 22.3 23.0 23.7 24.6 25.7 27.2 29.7 42.4 x High X_high 16.5 17.5 18.3 19.0 19.6 20.2 20.8 21.4 22.0 22.6 23.2 23.8 24.5 25.2 25.9 26.7 27.6 28.6 29.7 31.0 32.5 34.5 37.2 41.8 65.8 Give a working example: 1, 2, 3, …, 24 ‘Reduced Variate Function’ Cleanliness assessment of modern bearing steels Heat Sulphur Aluminium Titanium Oxygen A 0.006 % 0.029 % 18 ppm 6 ppm B 0.011 % 0.024 % 26 ppm 6 ppm Traditional metallographic methods do not differentiate for very clean steels Traditional metallographic methods do not facilitate bearing life modelling 2015-07-17 ©SKF Slide 8 [Code] SKF [Organisation] Extreme Value Analysis (ASTM E2283) Reduced Variate Function 4 3 2 1 Prob. Red.Var . 0 80% 1.50 90% 2.25 95% 2.97 99.9% 6.91 -1 -2 0 20 40 60 Inclusion Length (µm) 2015-07-17 ©SKF Slide 9 [Code] SKF [Organisation] 80 Heat A Heat B 100 Supplier C - outliers Reduced Variate 4 3 2 Heat 1 95% CI 1 0 -1 -2 10 20 30 40 50 Inclusion Length (µm) 2015-07-17 ©SKF Slide 10 [Code] SKF [Organisation] 60 70 80 Supplier C Reduced Variate 4 3 2 Heat 1 95% CI Heat 2 95% CI 1 0 -1 -2 10 20 30 40 50 Inclusion Length (µm) 2015-07-17 ©SKF Slide 11 [Code] SKF [Organisation] 60 70 80 Supplier D Reduced Variate 4 3 2 Heat 1 Heat 2 1 0 -1 -2 0 10 20 30 Inclusion Length (µm) 2015-07-17 ©SKF Slide 12 [Code] SKF [Organisation] 40 50 60 Supplier D Reduced Variate 4 3 2 Heat 1 Heat 2 1 0 -1 -2 0 10 20 30 Inclusion Length (µm) 2015-07-17 ©SKF Slide 13 [Code] SKF [Organisation] 40 50 60 Supplier E Reduced Variate 4 3 2 Heat 1 Heat 2 Heat 3 1 0 -1 -2 0 10 20 30 Inclusion Length (µm) 2015-07-17 ©SKF Slide 14 [Code] SKF [Organisation] 40 50 60 Supplier F Reduced Variate 4 3 2 Heat 1 Heat 2 Heat 3 1 0 -1 -2 0 10 20 30 40 Inclusion Length (µm) 2015-07-17 ©SKF Slide 15 [Code] SKF [Organisation] 50 60 70 Comparison of suppliers Reduced Variate 4 3 2 E F 1 0 -1 -2 0 10 20 30 Inclusion Length (µm) 2015-07-17 ©SKF Slide 16 [Code] SKF [Organisation] 40 50 60 Comparison of suppliers Reduced Variate 4 3 2 E F 1 0 -1 -2 0 10 20 30 Inclusion Length (µm) 2015-07-17 ©SKF Slide 17 [Code] SKF [Organisation] 40 50 60 Pooling of results from multiple heats Reduced Variate 5 4 3 2 E F 1 0 -1 -2 0 10 20 30 40 50 Inclusion Length (µm) 2015-07-17 ©SKF Slide 18 [Code] SKF [Organisation] 60 70 80 Pooling of results from multiple heats Reduced Variate 5 4 3 2 E F 1 0 -1 -2 0 10 20 30 40 50 Inclusion Length (µm) 2015-07-17 ©SKF Slide 19 [Code] SKF [Organisation] 60 70 80 Fraunhofer analysis of 19 heats of 52100 No evidence for a non-Gumbel GEV 2015-07-17 ©SKF Slide 20 [Code] SKF [Organisation] 2 EVA and rolling contact fatigue life of bearings 2015-07-17 ©SKF Slide 21 [Code] SKF [Organisation] Endurance test conditions (Pheonix 2001) Low reduction ratio material Turned inner rings • Inner rings turned from ± 100 mm ø bar material Increased running temperature • 83°C instead of 53°C • Full film conditions Additional tensile hoop stress applied to inner ring • Increased interference fit 2015-07-17 ©SKF Slide 22 [Code] SKF [Organisation] Material quality bearing life test Variant Oxygen Sulphur Bearing Life Remelt 4.3 ppm Zero 230 MRevs Std 1 3.5 ppm 0.003 wt% 74 MRevs Std 2 5.8 ppm 0.005 wt% 37 MRevs Std 3 4.8 ppm 0.003 wt% 15 MRevs Untreated 39 ppm 0.014 wt% 3 MRevs 2015-07-17 ©SKF Slide 23 [Code] SKF [Organisation] Extreme Value Analysis (EVA) results Reduced Variate 4 3 2 Rem elt Std_1 Std_2 Std_3 Untr eated 1 0 -1 -2 0 10 20 30 40 50 Inclusion Length (µm) 2015-07-17 ©SKF Slide 24 [Code] SKF [Organisation] 60 70 80 90 Extreme Value Analysis (EVA) results Reduced Variate 4 3 2 Rem elt Std_1 Std_2 Std_3 Untr eated 1 0 -1 -2 0 10 20 30 40 50 Inclusion Length (µm) 2015-07-17 ©SKF Slide 25 [Code] SKF [Organisation] 60 70 80 90 Methodology to link EVA to performance EVA ratings on inner rings turned from ±100 mm ø bar Life calculation using ‘virtual’ steel by randomly selecting inclusions from the EVA population and randomly positioning them in the rings • Actual life for one variant (Std_2) used to locate the predicted lives 2015-07-17 ©SKF Slide 26 [Code] SKF [Organisation] Predicted versus actual bearing L10 life Predicted Bearing L10 Life (MRevs) 1000 Factors not accounted for: - Reduction ratio - Ring forming process - Stressed volume - etc. 100 10 Rem elt Std_1 Std_2 Std_3 Untr eated 1 1 10 100 Actual Bearing L10 Life (MRevs) 2015-07-17 ©SKF Slide 27 [Code] SKF [Organisation] 1000 Predicted versus actual bearing L10 life Predicted Bearing L10 Life (MRevs) 1000 100 Rem elt Std_1 Std_2 Std_3 Untr eated 10 1 1 10 100 Actual Bearing L10 Life (MRevs) 2015-07-17 ©SKF Slide 28 [Code] SKF [Organisation] 1000 Inclusion assessment methods Inspected Area or Volume LF UST HF UST EVA ASTM E45 ISO 4967 1 DS 10 100 Inclusion Size (µm) 2015-07-17 ©SKF Slide 29 [Code] SKF [Organisation] 1000 Experience to date ASTM E2283 EVA for comparison • Heat to heat • Not measure every heat ASTM E2283 EVA for characterisation • Multiple heats over short timeframe • Compare steelmaker process routes Compliments other techniques • Need to use a combination of techniques to evaluate the inclusion population Next: ESIS round robin 2015-07-17 ©SKF Slide 30 [Code] SKF [Organisation]