Transcript Slide 1
Copper Functioning as an Oxygen Carrier in Chemical Looping Combustion Authors: Richard Baraki, Dr. Gabor Konya, Dr. Edward M. Eyring. Departments of: Chemistry and Chemical Engineering Chemical Looping Combustion Observed Oxygen Carrier • Copper – 2 Cu(s) + O2(g)↔ 2 CuO(s) http://gwydir.demon.co.uk/jo/minerals/pix/copper1.jpg Method of Analysis • Thermogravimetric Analysis TA Q500 ThermoFisher HP-TGA Copper • Overall oxidation 2 Cu(s) + O2(g)↔ 2 CuO(s) • Cu → Cu(I) 4Cu(s) + O2(g)↔ 2Cu2O(s) • Cu(I) → Cu(II) 2Cu2O(s) + O2(g)↔ 4 CuO(s) 2 days of looping (200+ loops) @ 850 °C Looping Ma Mass (mg) 25 24 23 22 0 20000 40000 60000 80000 Time (sec) 100000 120000 140000 16 Cu(I) →Cu(II) Cu(I) →Cu(II) @ 850 °C Fitted Cu(I) →Cu(II) @ 850 °C 25 Mass (mg) Mass (mg) 25 24 24 23 23 22 11600 11800 12000 12200 12400 12600 12800 13000 13200 13400 13600 22 11600 11800 12000 12200 12400 12600 12800 13000 13200 13400 13600 Time (sec) Time (sec) Residual of Mass of Y, (mg) Residual Residual plot Residual of Mass 0.4 0.2 0.0 -0.2 11600 11800 12000 12200 12400 12600 12800 13000 13200 13400 13600 Independent Variable Independent Variable, (sec) Pseudo first order equation • First-order reaction r = -d[A]/dt = k[A] • k = rate constant • A = amount of copper • Pseudo first order reaction for r = k[A][B]1/2 = k΄[A] • • • • k = rate constant k΄ = k[B]1/2 A= amount of copper B= partial pressure of oxygen Method of fit y = Wf + (Wi - Wf) * e(-k * (t-t0)) • Fitted Parameters • Wf - final weight of oxide • Wi - initial weight of oxide • k- rate constant • Fixed Parameter • t0- indicates start of reaction Shifting k values (TA-Q500) -3 3.00x10 -3 k (1/s) 2.00x10 -3 1.00x10 194-911 553-1270 911-1628 1270-1988 Time window (s) 1626-2347 Full run Shifting k values (HP-TGA) -3 3.6x10 -3 3.4x10 -3 3.2x10 -3 3.0x10 -3 k (1/s) 2.8x10 -3 2.6x10 -3 2.4x10 -3 2.2x10 -3 2.0x10 -3 1.8x10 -3 1.6x10 2500-3233 2867-3600 3233-3966 3600-4333 Time window (s) 3966-4700 Full run Cu2O/CuO/Cu2O system -2 3.50x10 -2 3.25x10 -2 3.00x10 -2 2.75x10 935°C -1 [sec ] -2 2.50x10 -2 2.25x10 -2 2.00x10 Rate constant of -2 1.75x10 -2 1.50x10 st Reduction, 1 order model Reduction, Avrami-Erofeev model st -2 1.25x10 -2 Oxidation, Pseudo 1 order model Oxidation, Avrami-Erofeev model 1.00x10 -3 7.50x10 -3 5.00x10 -3 2.50x10 0.00 825 850 875 900 Temperature [°C] 925 950 Temperature effects • Sintering – Tamman Temperature Pressure using HP-TGA • Pressure plots – 1 atm – 9 atm – 16atm – 25atm • Oxygen analyzer Pseudo first order equation • First-order reaction r = -d[A]/dt = k[A] • k = rate constant • A = amount of copper • Pseudo first order reaction for r = k[A][B]1/2 = k΄[A] • • • • k = rate constant k΄ = k[B]1/2 A= amount of copper B= partial pressure of oxygen Experimental Procedure • Sample loaded into quartz bucket – 200mg copper powder • Chamber closed and purged with pure nitrogen 15+ min • Temperature ramp from 21°C to 950°C in pure nitrogen gas at 25°C/min – Given experiment, pressure build up • At desired temperature and pressure, air is introduced Observations • Stoichiometric conversion • Rate at which sample is being oxidized Oxidation at different pressures 130 Cu →CuO 125 Mass (%) 120 115 atmospheric 9 atmospheres 16 atmospheres 25 atmospheres Theoretical yield 110 105 100 1000 2000 3000 4000 Time (sec) 5000 6000 7000 Observations • Stoichiometric conversion Oxidation at different pressures 130 Cu →CuO 125 Mass (%) 120 115 atmospheric 9 atmospheres 16 atmospheres 25 atmospheres Theoretical yield 110 105 100 1000 2000 3000 4000 Time (sec) 5000 6000 7000 Observations • Stoichiometric conversion • Rate at which sample is being oxidized Oxidation at different pressures 130 Cu →CuO 125 Mass (%) 120 115 atmospheric 9 atmospheres 16 atmospheres 25 atmospheres Theoretical yield 110 105 100 1000 2000 3000 4000 Time (sec) 5000 6000 7000 Reaction Rates for Range of Mass Increases of 101 to 105%: Decrease in rate with increasing pressure indicative of diffusional limitations 105.0 atmospheric 9 atmospheres 16 atmospheres 25 atmospheres 104.5 104.0 Mass (%) 103.5 103.0 102.5 102.0 101.5 101.0 0 1000 Time (sec) Theoretical rates versus experimental rates based on the pseudo-first order model, to be revisited after experimental constraints eliminated Cu →CuO Experimental results of reaction rates Theoretical pseudo-first order reaction rates 0.32 0.30 0.28 Rate (% mass/seconds) 0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 5 10 15 Pressure, atm 20 25 Gas cylinders HP-TGA Oxygen analyzer Oxygen concentrations at exit of reactor corresponding to HP-TGA plots previously shown. Failure to reach 21% to be explored 25 Oxygen analysis of 25 atm Cu →CuO 16 atm 9 atm atmospheric 125 20 120 15 Mass (%) O2 % in exiting gas Cu →CuO 130 10 115 atmospheric 9 atmospheres 16 atmospheres 25 atmospheres Theoretical yield 110 5 105 100 0 0 2000 4000 Time (seconds) 6000 1000 2000 3000 4000 Time (sec) 5000 6000 7000 25 25 atm 16 atm 9 atm atmospheric Oxygen analysis of Cu →CuO O2 % in exiting gas 20 15 10 5 0 0 2000 4000 Time (seconds) 6000 Conclusion • Pseudo first order model does not fit Cu/Cu2O/CuO system • Data indicate diffusional limitations Acknowledgements • Department of Energy – under Award Number DE-NT0005015. • Dana Overacker • Kevin Tucker • Blake R. Wilde