Analog-Digital

Download Report

Transcript Analog-Digital

Micro transductors ’08
CMOS Basics
Dr.-Ing. Frank Sill
Department of Electrical Engineering, Federal University of Minas Gerais,
Av. Antônio Carlos 6627, CEP: 31270-010, Belo Horizonte (MG), Brazil
[email protected]
http://www.cpdee.ufmg.br/~frank/
Announcement
Next class: Thursday, 13. March
Room 308 CCE
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
2
Optional Topics
Please, choose 2 out of the following 4 topics
Final date: 14th of March
1.
2.
3.
4.
Future trends in VLSI design
Basics of Hspice-Simulations
Effects in nanometer CMOS circuits
Reliability problems in current and future
designs
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
3
Goals






Where do we find Integrated Ciruits?
History and Trends
CMOS: basic ideas
Logic gates
Delay estimation
Sizing
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
4
Where do we find chips?
100%
„Computer are the workhorses
of the semiconductors industry.“
Processors
Memory
80%
Logic
Motivation



Performance
Flexibility
Mobility
Analog
60%
Discretes
Optoelectronics/
Sensors/Bipolar
40%
20%



0%
~ 2 % are processors
Units
~ 6.5 Billion processors per year
~ 40 % of all parts are used in the PC area
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
Revenue
Source: WSTS ‘02
5
Scenarios



Obviously tasks
High performance demands
Fast execution
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
6
Scenarios cont’d


Hidden helper
Low performance demands
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
7
History





1906 – Semiconductors used to detect radio signals
1925 – FET concept patent by J. Lilienfeld
1941 – Z3 by Konrad Zuse – first computer
1946 – ENIAC – first electronic computer
1947 – Transistor “Invented”



1958 – Integrated Circuit




AT&T ignores Lilienfeld
Bardeen, Brattain and Schockley, AT&T, Nobel Prize in 1956
Kilby & Noyce (died 1990)
Kilby - Noble Prize in 2000
1960 - MOSFET manufactured and patented
1963 - CMOS logic invented

Resistors replaced by transistors
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
8
History cont’d
Zuse Z3 – First computer* (1941)






First working programmable,
fully automatic computing
machine
2,000 Relays
Clock frequency of ~5 - 10 Hz
Word length of 22 bits
Programmed by punched film
stock
Addition, Multiplication,
Division, Square root
* Elected at “1st International Conference on the History of Computing" in
Paderborn, Germany, 1998
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
9
History cont’d
ENIAC – First electronic computer (1946)

Electronic Numerical Integrator And Computer

At Moore School of Electrical Engineering, University of Pennsylvania

17,468 vacuum tubes, 7,200 diodes (+ ca. 80k resistors & capacitors)

5 Million hand-soldered joints
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
10
History cont’d
Vacuum Tubes in ENIAC
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
11
History cont’d
(a) First transistor (1947, Bardeen & Brattain, Bell labs)
(b) First integrated circuit (1958, Kilby, AT&T)
Source: Weste,“CMOS VLSI design”,2003
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
12

per integrated function
Log2 of number of components
Moore‘s Law

Prediction by Gordon
Moore in 1965
Semiconductor technology
will double its
effectiveness every 18
months
Year
Source: Moore, 1665
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
13
Moore’s Law cont’d
Source: Moore, ISSCC 2003
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
14
Price of a transistor
Trend: Cost per function
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
15
Trend: Performance
1000000
100000
Pentium® 4 proc
10000
1 TIPS
1000
MIPS
100
10
1
386
Pentium® proc
8086
0,1
0,01
1970
8080
1980
1990
2000
2010
2020
Source: Moore, ISSCC 2003
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
16
Trend: Power
Source: Moore, ISSCC 2003
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
17
Trend: Power Density
Sun’s
Surface
Power Density (W/cm2)
10000
Rocket
Nozzle
1000
100
Nuclear
Reactor
Prescott
Pentium®
8086 Hot Plate
10 4004
P4
8008 8085
Pentium®
386
286
486
8080
1
1970
Copyright Sill, 2008
1980
1990
Year
2000
Micro transductors ‘08, CMOS Basics
2010
Source: Moore, ISSCC 2003
18
Dimensions
m
10
cm
100
nm
10
111mm
cm
µm
µm
Source: „Spektrum der Wissenschaften“
„65 nm“-Transistor
Source: Intel
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
19
The CMOS Technology

CMOS = Complementary Metal Oxide Semiconductor

Currently most applied logic family
Main advantages:


Low Power (compared to other technologies)

Very good scalability

High Speed

High packaging density
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
20
The CMOS Technique cont’d

Main Idea:
 Combination
of two complementary switches
 Switches
are metal-oxide-semiconductor field-effect
transistors (MOSFET)
 Realization

of logic gates (AND, NAND, …)
“Metal–Oxide–Semiconductor“:
 Physical
structure of MOSFETs (metal gate electrode,
oxide insulator, semiconductor material)
 Today:
Copyright Sill, 2008
polysilicon instead of metal
Micro transductors ‘08, CMOS Basics
21
What is a transistor?
S
D
Source: Rabaey,“Digital Integrated Circuits”,1995
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
22
PMOS and NMOS
d
nMOS
pMOS
g=0
g=1
d
d
OFF
g
ON
s
s
s
d
d
d
g
OFF
ON
s
s
s
Source: Rabaey,“Digital Integrated Circuits”,1995
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
23
NMOS-Transistor
Source
Gate
Drain
Polysilicon
SiO2
G
n+
n+
S
p
D
bulk Si
@NMOS: Body is (commonly) tied to ground (0 V)
@PMOS: Body is (commonly) tied to VDD
Source: Rabaey,“Digital Integrated Circuits”,1995
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
24
NMOS-Transistor (2)
polysilicon
gate
Gate-width
W
tox
n+
L
n+
SiO2 gate oxide
(good insulator, eox = 3.9
p-type body
tox – thickness of oxide layer
Gate length
Source: Rabaey,“Digital Integrated Circuits”,1995
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
25
Cross section of NMOS and PMOS
Source: Weste,“CMOS VLSI design”,2003
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
26
Layout Mask Set


Transistors and wires are defined by masks
Cross-section taken along dashed line
A
Y
GND
VDD
nMOS transistor
pMOS transistor
well tap
substrate tap
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
27
I-V Curves of NMOS
Drain
Gate
Ids
Vds
Vgs
Source
Source: Weste,“CMOS VLSI design”,2003
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
28
Threshold Voltage Vth

Transistor characteristic

If: „Gate-Source“-Voltage Vgs higher
than Vth
Channel under Gate

Current between Drain and Source
If: Vgs lower than Vth

No current
Copyright Sill, 2008
Gate
Gate


Vgs <
>V
Vthth
Drain
Source
Source
Micro transductors ‘08, CMOS Basics
Ids
Drain
29
Logic Gates

Task (e.g. calculation)

Transfer into Logic Gates (Synthesis)

Gate characteristics:

Delay

Power dissipation

more ...
Y = A+B

Gates realized by transistors

Transistors determine gate
characteristics
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
30
Example: Half-adder

How do you add the two bits A0
and B0 in binary logic?
 So called Half-adder:
A0
B0
Result Carry
Sum
0
0
00
0
0
1
0
01
0
1
0
1
01
0
1
1
1
10
1
0
A0 B0
CarryCarry
HA
Sum
Sum
Copyright Sill, 2008
In1 (A0)
In2 (B0)
AND
XOR
0
0
0
0
1
0
0
1
0
1
0
1
1
1
1
0
Micro transductors ‘08, CMOS Basics
31
CMOS Scheme
VDD
PUN
IN1
…
INx
(supply voltage)
PUN – Pull-up Network
PDN – Pull-down Network
OUT
PDN
GND
Copyright Sill, 2008
(ground)
Micro transductors ‘08, CMOS Basics
32
CMOS Inverter
VDD
IN1
IN1
OUT
0 (GND)
1 (VDD)
1 (VDD)
0 (GND)
OUT
IN1
GND
Copyright Sill, 2008
OUT
Micro transductors ‘08, CMOS Basics
33
Transistor as Water-tap
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
34
Transistor as Water-tap cont’d
Voltage (Volt, V)
Water pressure (bar)
Current (Ampere, A)
Water quantity (liter)
0 Volt
1 Volt
1 Volt
1 Volt
1 Volt
1 Volt
0 Volt
1 Volt
? Volt
1 Volt
0 Volt
? Volt
0 Volt
1 Volt
-
-
-
-
Source: Timmernann, 2007
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
35
NAND Gate
In1
Out
In2
VDD
VDD
Pull-up Network
T3
In1
In2
T2
X X
Out
XT1
XT0
In1
In2
PUN
PDN
Out
1
1
OFF
ON
0
0
1
ON
OFF
1
1
0
ON
OFF
1
0
0
ON
ON
1
Pull-down Network
GND
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
36
NOR Gate
VDD
X
In1
Pull-up Network
T3
XT2
In2
Out
Pull-down
Network
XT1 XT0
GND
Copyright Sill, 2008
In1
In2
PUN
PDN
Out
1
1
OFF
ON
0
0
1
OFF
ON
0
1
0
OFF
ON
0
0
0
ON
OFF
1
GND
Micro transductors ‘08, CMOS Basics
37
AND and OR Gate
AND
NAND
INV
OR
NOR
Copyright Sill, 2008
INV
In1
In2
OutAND
OutNAND
1
1
1
0
0
1
0
1
1
0
0
1
0
0
0
1
In1
In2
OutOR
OutNOR
1
1
1
0
0
1
1
0
1
0
1
0
0
0
0
1
Micro transductors ‘08, CMOS Basics
38
Delay Definitions
Vin
Vout
Vin
input
waveform
50%
Propagation delay tp
tpHL
t
tpLH
Vout
90%
output
waveform
signal slopes
50%
10%
tf
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
tr
t
39
RC-Delay Model


Simple but effective delay model
Use equivalent circuits for MOS transistors
 Ideal
switch
 Transistor capacitances
 ON resistance ( = when transistor is conducting (=ON)
 channel between Drain to Source acts as resistor)

Delay t ~ R*C
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
40
MOSFET capacitances


Any two conductors separated by an insulator create a
capacitor
MOS capacitances have three origins:



The basic MOS structure
The channel charge
The pn-junctions depletion regions
Gate
Source
CGS
Drain
CGB
CSB
CGD
CDB
Bulk
Copyright Sill, 2008
Bulk
Micro transductors ‘08, CMOS Basics
41
RC-Delay Model: Inverter
Rising Slope
CP,gate
CN,gate
Copyright Sill, 2008
RP,DS
X
Micro transductors ‘08, CMOS Basics
Cout
42
RC-Delay Model: Inverter
Falling Slope
CP,gate
X
Cout
RN,DS
CN,gate
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
43
RC-Delay Model: Inverter cont’d
Where does Cout come from?


Input capacitance (= gate capacitances) of following gate
Diffusion capacitances (Drain-Bulk) of PMOS- and NMOS
transistors
CP,gate
CP,DB
CN,DB
Cout
CN,gate
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
44
RC-Delay Model: Width




Gate width W can be changed by Designer (L, Tox, VDD…
are fixed)
Capacitance proportional to width: C ~ W
Resistance inversely proportional to width: R ~1 / W
Resistance of NMOS approx. two times smaller than
PMOS with same width:
WP = WN
WN
RN
WP = 2*WN
Copyright Sill, 2008
RP = 2*RN
Micro transductors ‘08, CMOS Basics
RP = RN  CP = 2*CN!
45
RC-Delay Model: Fanout
W1=W2=W3
L1=L2=L3
Cload
fanout : f 
Cin
W2/L2
W1/L1
f=2
W3/L3
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
46
RC-Delay Model: Rising Slope
CP,gate
CN,gate
CP,DB
WP=2n
X
RN ,DS
Cload
CN,DB
WN=n
R
2R

, RP ,DS 
WN
WP
C N ,DB  C  WN , C N , gate  C  WN
CP ,DB  C  WP , CP , gate  C  WP
t  RC  RP ,DS   C N ,DB  CP ,DB  Cload 
2R

  C  WN  C  WP  f  Cin 
WP
2R
 nC  2nC  3nfC
2n
 3 1  f   R C

Copyright Sill, 2008

Micro transductors ‘08, CMOS Basics
47
RC-Delay Model: Falling Slope
CP,gate
X
CP,DB
WP=2n
RN ,DS
Cload
CN,gate
CN,DB
WN=n
R
2R

, RP ,DS 
WN
WP
C N ,DB  C  WN , C N , gate  C  WN
CP ,DB  C  WP , CP , gate  C  WP
t  RC  RN ,DS   CP ,DB  C N ,DB  Cload 
R

  C  WP  C  WN  f  Cin 
WN
R
 2nC  nC  3nfC
n
 3 1  f   R C

Copyright Sill, 2008

Micro transductors ‘08, CMOS Basics
48
RC-Delay Model: Examples

Delay of an Inverter with a fanout of 64:
t  3 1  f   R C
 3(1  64)  R C
 195  R C
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
49
RC-Delay Model: Examples cont’d

Chain of Inverters with Cload = 192 C□ and Cin=3 C□
INV1
INV2
INV3
Cin=3 C□
f chain
Cload=192 C□
Cload ,chain

 64  f INV 3  f INV 2  f INV 1
Cin ,chain
Cload , INV 3 Cload , INV 2 Cload , INV 1 Cload ,chain Cin , INV 3 Cin , INV 2






Cin , INV 3 Cin , INV 2 Cin , INV 1
Cin , INV 3 Cin , INV 2 Cin ,chain
tchain  tINV 1  tINV 2  tINV 3
 3  R C (1  f INV 1 )  (1  f INV 2 )  (1  f INV 3 ) 
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
50
RC-Delay Model: Examples cont’d

Chain of Inverters with Cload = 192 C□ and Cin=3 C□
INV1
INV2
INV3
Cin=3 C□
f INV 1  1, f INV 2  1, f INV 3  64
tchain1,1,64  207  R C
Cload=192 C□
f INV 1  4, f INV 2  4, f INV 3  4
tchain 4,4,4  45  R C
Chain of Inverters: Optimum result (for speed) at
equal fanout!
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
51
Chains of Inverters
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
52
Sizing

Increasing Width
 Resistance get down
 Increasing current
 Decreasing delay 

BUT
 Capacitance increase too
 Internal capacitances increase 
+ Output load of previous gates increases 
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
53
Sizing for Performance
Sizing (W↑) auch interne
Kapazität (Cdb,PMOS,
Cdb,NMOS) = > größer
Effekt von Sizing sinkt!
Source: Irwan, PSU, 2001
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
54
Alpha Power Law Model
k'  CL VDD
trise 
(WPMOS / L )  (VDD  VTH ,PMOS )
k'  CL VDD
t fall 
(WNMOS / L )  (VDD  VTH ,NMOS )
Copyright Sill, 2008
WPMOS
Out
In
Micro transductors ‘08, CMOS Basics
WNMOS
CL
55
Logical Effort
Source: Harris ‘05
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
56
Logical Effort (LE) cont’d
Cout
gain 
* LE  f * LE
Cin
Cin,firstGate
Cout
LE of the whole circuit:
LEsum 
allGates

LEi
i
fanout of the whole circuit: fsum = Cout / Cin,firstGate
gain of the whole circuit:
Copyright Sill, 2008
gainsum = LEsum * fsum
Micro transductors ‘08, CMOS Basics
57
Logical Effort (LE) cont‘d
gainsum  gainsum
 for every gate (starting at the last gate):
Cout , gate 
Copyright Sill, 2008
gaingate  Cin , gate1
LE gate
Micro transductors ‘08, CMOS Basics
58
BACKUP
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
59
Moore‘s Law (3)
from Rabaey ‘05
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
60
Holt 05
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
61
Memory
Processor
...
Mainframe
Memory
Processor
I/O
Further
Terminals
Terminal
Display
Keyboard
Mainframe-Age
1948
Shockley:
1958 Kilby: IC
Copyright
Sill, 2008
Transistor
Cache
Memory
Controller
Pic changed, NoC
is “our” new
approach, later
Memory
Processor
Off-Chip/On-Board Bus
Cache
Memory
Controller
On-Chip Bus
I/O
Audio
RF
I/O
Audio
RF
3D
Graphic
Video
Bluetooth
3D
Graphic
Video
Bluetooth
PC-Age
SOC-Age
MicroIBM:
transductors
1981
5150 ‘08,
PCCMOS Basics ~2000: On-chip integration
62
Metal Layers
Conductors
(Aluminum / Copper)
Oxide
Dielectric
Tungsten
Plugs
THE DEVICE
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
63
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
64
nMOS I-V Summary
Saturation
ID (m A)
VGS = 4V
1
VGS = 3V
0.020
÷ ID
Triode
0.010

2
VGS = 5V
Square Dependence
VDS = VGS-VT
Subthreshold
Current
VGS = 2V
VGS = 1V
0.0
1.0
2.0
3.0
4.0
5.0
0.0
VDS (V)
(a) ID as a function of VDS
2.0
VT1.0
VGS (V)
(b) IDas a function of
VGS
(for VDS = 5V)
(NMOS Enhancement Transistor: W = 100µm, L = 20
µm)
Copyright Sill, 2008
3.0
Micro transductors ‘08, CMOS Basics
from Rabaey '95
65
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
66
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
67
nMOS Cutoff


No channel
Ids = 0
Vgs = 0
g
+
-
+
-
s
d
n+
n+
Vgd
p-type body
b
from Harris
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
68
nMOS Linear


Channel forms
Current flows from
d(rain) to s(ource)
 =>
Vgs > Vt
+
-s
Vds = 0
n+
p-type body
b
 Ids

+
-
Vgd = Vgs
d
n+
e- from s to d
increases with Vds
Similar to linear
resistor
g
Vgs > Vt
+
-s
g
Vgs > Vgd > Vt
+
- Ids
d
n+
n+
0 < Vds < Vgs-Vt
p-type body
b
from Harris
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
69
nMOS Saturation




Channel pinches off
Ids independent of Vds
We say current saturates
Similar to current source
Vgs > Vt
g
+
-
+
-
Vgd < Vt
d Ids
s
n+
n+
Vds > Vgs-Vt
p-type body
b
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
from Harris
70
Inverter - Schaltverhalten
NMOS off
PMOS lin
5
Vout
NMOS sat
PMOS lin
4
PMOS
Out
In
3
NMOS sat
PMOS sat
2
NMOS
d
1
NMOS lin
PMOS sat
1
Copyright Sill, 2008
CLoa
2
3
4
NMOS lin
PMOS off
5
Vin
Micro transductors ‘08, CMOS Basics
71
Delay (2)
from Rabaey ‘05
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
72
Inverter-Kette (2)
x
t  3(1  f1 ) RC  3(1  f 2 ) RC  ...  3(1  f m ) RC
m
m
 3( f1  ...  f m ) RC  3nRC
i
 m  xi
m
64  f1 * f 2 * ... * f m
Gesucht ist minimales t, d.h.
minimal
bei:
xi  xi 1  ...  x1
f1  ...  f m
gilt:
x
m
m
i
 m  xi
denn:
m
m * xi m m
 xi
m
d.h., wenn alle xi gleich sind, dann ist (in diesem Fall) die Summe am kleinsten.
d.h. alle fanouts müssen gleich sein, somit gilt:
x
f  64
(x = Anzahl der Inverter)
Copyright Sill, 2008
Micro transductors ‘08, CMOS Basics
73