Transcript Document
Energy in Transition II John Holmberg, project leader Physical Resource Theory Chalmers AES program conference 2009, Katrineholm CO 2 energy energyservices CO 2 GDP cap energy energyservices GDP cap 1. Energy efficiency (technology) 2. Relative consumption patterns Rebound effects 3. Level of consumption (e.g. work time) Publications with AES funding Algehed J, Wirsenius, S, Jönsson J, 2009. Modelling energy efficiency and carbon dioxide emissions in energyintensive industry under stringent CO2 policies: Comparison of top-down and bottom-up approaches and evaluation of usefulness to policy makers, ECEEE Summer Study, La Colle sur Loup, France 1–6 June 2009. Nässén J, 2007. Energy efficiency - Trends, determinants, trade-offs and rebound effects with examples from Swedish housing, Doctoral thesis, Chalmers University of Technology. Nässén J, Holmberg J, 2005. Energy efficiency - a forgotten goal in the Swedish building sector? Energy Policy, Vol. 33, Iss. 8, May 2005, Pages 1037-1051. Nässén J., Holmberg J., Wadeskog A., Nyman M., 2007. Direct and indirect energy use and carbon emissions in the production phase of buildings: An input–output analysis, Energy, Vol. 32, Iss. 9, 1593-1602. Nässén J, Holmberg J, 2009. Quantifying the rebound effects of energy efficiency improvements and energy conserving behaviour in Sweden, Energy Efficiency, Springer, In Press, Available online. Nässén J, Holmberg J, Larsson J, 2009. The effect of work hours on energy use: A micro-analysis of time and income effects. In Proceedings to ECEEE Summer Study, La Colle sur Loup, France 1–6 June 2009. Nässén J, Sprei F, Holmberg J, 2008. Stagnating energy efficiency in the Swedish building sector - Economic and organisational explanations, Energy Policy, Vol. 36, Issue 10, October 2008, Pages 3814-3822. Sprei F, 2007. Challenges for end-use energy efficiency-studies of residential heating and personal transportation in Sweden, Licentiate thesis, Chalmers University of Technology. Sprei F, Karlsson S and Holmberg J, 2007. Better performance or lower fuel consumption? Technological development in the Swedish new-car fleet 1975-2002. Accepted for publication in Transportation Research Part D. Sprei, F and Karlsson S, 2007a. Improved fuel consumption through downsizing. Rhetoric or reality? An analysis of the Swedish new car fleet. In Proceedings to The 11th World Conference on Transportation Research, Berkeley, USA, 24-28 June 2007. Sprei, F and Karlsson S, 2007b. The relation between technological and market development – its effects on fuel efficiency in the Swedish new car fleet. In Proceedings to The 11th World Conference on Transportation Research, Berkeley, USA, 24-28 June 2007. Energianvändning (TWh/år) 450 1975 400 Bästa teknik 2000 350 Avancerad teknik 2000 300 Realiserad 2000 250 200 150 100 50 0 Sverige Bostäder & service Transporter Industri Energianvändning (TWh/år) 450 1975 400 Bästa teknik 2000 350 Avancerad teknik 2000 300 Realiserad 2000 250 200 150 100 50 0 Sverige Bostäder & service Transporter Industri Rebound effect: Dependency on three dimensionless parameters 1. The price elasticity of the energy service 2. The profitability of the energy efficiency investment (investment / break-even investment) 3. The relative energy intensity of the energy service (in relation to the marginal energy intensity of consumption) 0.1 -0.2 0.2 -0.1 0.3 Ex. results 0 -0.25 -0.5 0.25 0 1.25 1 0.75 0.5 q/qBE Rebound effect forTotal private transport rebound 0.6 0.6 ”Small car” Energy service price elasticity 0.5 -0.4 ”Hybrid car” 0.4 0.4 -0.3 0.3 0.3 -0.2 0.2 0.2 0.1 0.1 -0.1 00 0 -0.25 0 0.25 0.5 q/qBE Profitability 0.75 1 1.25 Quantification of rebound effects: 5 - 15 % for most investments Low - for early adoption of expensive technologies Low - if service demand is saturated High - up to 50 % for downsizing options High - for some radical innovations Swedish household consumption and energy use, 2006 Energianvändning (GJ/cap/år) 800 700 600 500 400 300 200 100 0 0 100 200 300 400 500 600 700 800 Totala utgifter (1000 kr/cap/år) Based on Swedish Household Budget Survey (2006) and input-output analysis of energy use + 10 % income + 9 % energy use (also in multi-variate regression) Energianvändning (GJ/cap/år) 800 700 600 500 400 300 200 100 0 0 100 200 300 400 500 600 Totala utgifter (1000 kr/cap/år) 700 800 Energianvändning (GJ/cap/år) 800 700 600 500 400 300 200 100 0 0 100 200 300 400 500 600 Totala utgifter (1000 kr/cap/år) 700 800 Large variation Energianvändning (GJ/cap/år) 800 700 600 500 400 300 200 100 0 0 100 200 300 400 500 600 Totala utgifter (1000 kr/cap/år) 700 800 Large variation Energianvändning (GJ/cap/år) 800 High energy intensity (decile) 700 600 500 400 300 Low energy intensity (decile) 200 100 0 0 100 200 300 400 500 600 Totala utgifter (1000 kr/cap/år) 700 800 Large variation Energianvändning (GJ/cap/år) 800 High energy intensity (decile) 700 600 500 400 300 Low energy intensity (decile) 200 Factor 3.5 100 0 0 100 200 300 400 500 600 Totala utgifter (1000 kr/cap/år) 700 800 Household consumption Medelkonsumtion Livsmedel Utemåltider Alkohol & tobak Förbrukningsvaror Hushållstjänster, sjukvård Kläder & skor Bostad El & bränslen Möbler & inventarier Hushållsutrustning Inköp av fordon Drift av fordon Lokalresor, transporttjänster Fritidsbostad Tele, Radio, TV Resor, hotell Böcker, tidningar, TV-licens etc. Övrig fritid Skattepliktiga förmåner 0 50 100 150 kr per 1000 kr totala utgifter 200 250 Household consumption Medelkonsumtion Livsmedel Utemåltider Hög marginalkonsumtion Alkohol & tobak Låg marginalkonsumtion Förbrukningsvaror Hushållstjänster, sjukvård Kläder & skor Bostad El & bränslen Möbler & inventarier Hushållsutrustning Inköp av fordon Drift av fordon Lokalresor, transporttjänster Fritidsbostad Tele, Radio, TV Resor, hotell Böcker, tidningar, TV-licens etc. Övrig fritid Skattepliktiga förmåner 0 50 100 150 kr per 1000 kr totala utgifter 200 250 I vilken riktning utvecklas konsumtionen? 30 Utgiftsandelar (%) 25 Bostadsutgifter 20 Bostad Sverige 15 Fordon Sverige 10 5 Fordonsutgifter 0 0 10 20 30 Totala utgifter (USD/cap/år) 40 30 Utgiftsandelar (%) 25 Bostadsutgifter 20 Bostad Sverige 15 Fordon Sverige ? 10 5 Fordonsutgifter 0 0 10 20 30 Totala utgifter (USD/cap/år) 40 30 Utgiftsandelar (%) 25 Bostadsutgifter 20 Bostad Sverige 15 Fordon Sverige ? 10 Bostad USA Fordon USA 5 Fordonsutgifter 0 0 10 20 30 Totala utgifter (USD/cap/år) 40 The effect of work hours on energy use A micro-analysis of: 1.Income effects: marginal consumption of changing income 2.Time effects: marginal activity change of changing work time Energy intensity (MJ/hr) for different activities 140 Car travel Energy intensity (MJ/cap/hr) 120 100 80 60 40 Walking, biking Child care 20 Work Personal care Entertainment, culture Public travel Hobbies Domestic work Socializing TV, radio, etc Sports Energy use independent of time use 0 0 4 8 12 16 Hours per day (average) 20 Calculated from Swedish Time Use Survey (2000/2001), Swedish Household Budget Survey (2006), and input-output analysis of energy use. 24 Marginal time use Time use Average 15.1 CO2eq int. MJ/cap/h kgCO2eq/cap/h Marginal Minutes/hour Minutes/hour Time at work Energy intensity 8.9 0.41 14.1 *** 4.4 *** 34.3 0.72 10.2 0.42 14.4 *** 3.4 ** 11.5 0.48 19.4 0.98 1.3 ** 5.2 *** 54.8 2.57 24.1 1.16 9.0 *** 5.0 *** 19.4 0.54 43.0 1.95 10.3 0.46 44.9 2.01 2.1 Travel - car/motorcycle 2.4 ** 134.1 Significance levels: + = p < 0.1; * = p < 0.05; ** = p < 0.01; *** = p < 0.001 7.61 Domestic work 5.5 Child care 1.2 Sleep, eating, hygiene 24.6 Sports and outdoor activities 1.4 Entertainment, culture 0.2 Socializing 2.4 TV, radio, reading 5.0 Hobbies 1.1 Travel - bicycle/foot 0.8 Travel - bus/train 0.5 -60.0 1.7 ** -0.8 ** Results Longer work hours by 1 % Energy use CO2 eq. Income effect + 0.89 % + 0.87 % Time effect - 0.06 % - 0.02 % Total effect + 0.83 % + 0.85 % • • Income effect >> Time effect A change in work time by 1 % cause a change in energy use by 0.8 % on average Energy intensity (J/h) Very low (zero) Use of appliances: medium high Commuting: high Activity Happiness Sex 4,7 Socialising 4,0 Relaxing 3,9 Praying/meditating 3,8 Eating 3,8 Exercising 3,8 Watching TV 3,6 Shopping 3,2 Preparing food 3,2 Talking in phone 3,1 Taking care of children 3,0 Computer/internet 3,0 Housework 3,0 Working 2,7 Commuting 2,6 Energy efficiency in cars: trends, technology, consumers and other actors How has technical development been used between 85 and 02? 30 Tekniska förbättringar Förändring i bränsleförbrukning Ökad service % Netto viktökning 20 Högre acceleration 10 2/3 ökad service Större bilar 0 1985 Fler hästkrafter/ cylindervolym -10 -20 -30 -40 Luftmotstånd Rullmostånd Termisk effektivitet Minskad friktion i drivlina 2002 1/3 minskad bränsle-12 %förbrukning Fuel consumption (l/100km)1985-2007 10 Bränsleförbrukning l/100 km 8 6 Alla Bensin 4 Diesel Flexifuel 2 0 1985 1990 1995 2000 2005 Fuel consumption (l/100km)1985-2007 10 Bränsleförbrukning l/100 km 8 Petrol Diesel 6 Alla Bensin 4 Diesel Flexifuel 2 0 1985 1990 1995 2000 2005 Fuel consumption (l/100km)1985-2007 10 Flexifuel Petrol Diesel Bränsleförbrukning l/100 km 8 6 Alla Bensin 4 Diesel Flexifuel 2 0 1985 1990 1995 2000 2005 Performance: max power (kW) 1985-2007 120 110 Effekt (kW) 100 90 Alla Bensin 80 Diesel 70 Flexifuel 60 50 40 1985 1990 1995 2000 2005 Performance: max power(kW) 1985-2007 120 Diesel 110 Petrol Effekt (kW) 100 90 Alla Bensin 80 Diesel 70 Flexifuel 60 50 40 1985 1990 1995 2000 2005 Performance: max power(kW) 1985-2007 120 Flexifuel Diesel 110 Petrol Effekt (kW) 100 90 Alla Bensin 80 Diesel 70 Flexifuel 60 50 40 1985 1990 1995 2000 2005 Size: weight(kg) 1985-2007 1700 1600 Vikt (kg) 1500 1400 Alla Bensin Diesel 1300 Flexifuel 1200 1100 1000 1985 1990 1995 2000 2005 Size: weight (kg) 1985-2007 1700 Diesel 1600 Vikt (kg) 1500 PetrolAlla 1400 Bensin Diesel 1300 Flexifuel 1200 1100 1000 1985 1990 1995 2000 2005 Size: weight(kg) 1985-2007 1700 Diesel 1600 Vikt (kg) 1500 Flexifuel PetrolAlla 1400 Bensin Diesel 1300 Flexifuel 1200 1100 1000 1985 1990 1995 2000 2005 With petrol engine 201 g CO2/km 21% Diesel cars 166 g CO2/km With weight and power of petrol cars 139g CO2/km 17 % Based on data from 2007 of diesel och petrol cars with passenger space index in the range of 8500-10 000 Interview study • • Demand side: 7 interviews with 9 customers Supply side: interviews with Swedish car producers, BilSweden, importers and dealers. Demand side • • • It’s fun to own a car! The same or better car as previous + environmental concern Two environmental corncerns: – One that acknowledges a trade off between performance and environmental concern – One that does not acknowledge a trade off Demand side Environment Economy Emotion Elemental Supply side • • • • Customer or producer – who defines what cars are sold? Emotions important when selling cars Supplier acknowledge that customers have an increased environmental concern – this is seen as a paradigm shift There is a close relation with policy makers Tentative conclusions Environment • • • There is a challenge in making the environmental concern durable Regulations are important for long term stearing The media attention on climate change has acted as a facilitator for stricter regulations Economy Emotion Elemental Studies of system aspects of plug-in hybrids (partly with AES-funding) • • • • • • • Karlsson S & Ramírez, 2007. Plug-ins – a viable efficiency option? (In Proceedings to ECEEE 2007 Summer Study: Saving energy – just do it! La Colle sur Loup, France 4–9 June 2007.) Hedenus F, S Karlsson, C Azar, F Sprei, 2008. Electricity or hydrogen for transportation? System interactions between the transportation and stationary sectors in a carbon constrained world. Energi & Miljö, CTH. (I dokt. avh, Hedenus) Göransson L, S Karlsson, F Johnsson, 2009. Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system, Energi & Miljö, Chalmers. (I lic uppsats, Göransson) Andersson Sara-Linnéa & Anna Elofsson, 2009. Plug-in Hybrid Electric Vehicles as Control Power. Case studies of Sweden and Germany. Examensarbete, Energi & Miljö, Chalmers. Karlsson S, 2009. Optimal size of PHEV batteries from a consumer perspective – estimation using car movement data and implications for data harvesting. In Proceedings to EVS24, Stavanger, May 13-16 2009. Hedenus F, S Karlsson, C Azar, F Sprei, 2009. The transportation energy carrier of the future. System interactions between the transportation and stationary sectors in a carbon constrained world. In Proceedings to EVS24, Stavanger, May 13-16 2009. Göransson, L., S Karlsson, F Johnsson, 2009. Plug-in hybrid electric vehicles as a mean to reduce CO2 emissions from electricity production. In Proceedings to EVS24, Stavanger, May 13-16 2009.