Transcript Document

Energy in Transition II
John Holmberg, project leader
Physical Resource Theory
Chalmers
AES program conference 2009, Katrineholm
CO 2 
energy
energyservices
CO 2
GDP



 cap
energy
energyservices
GDP
cap
1. Energy
efficiency
(technology)
2. Relative
consumption
patterns
Rebound effects
3. Level of
consumption
(e.g. work time)
Publications with AES funding
Algehed J, Wirsenius, S, Jönsson J, 2009. Modelling energy efficiency and carbon dioxide emissions in energyintensive industry under stringent CO2 policies: Comparison of top-down and bottom-up approaches and evaluation
of usefulness to policy makers, ECEEE Summer Study, La Colle sur Loup, France 1–6 June 2009.
Nässén J, 2007. Energy efficiency - Trends, determinants, trade-offs and rebound effects with examples from Swedish
housing, Doctoral thesis, Chalmers University of Technology.
Nässén J, Holmberg J, 2005. Energy efficiency - a forgotten goal in the Swedish building sector? Energy Policy, Vol.
33, Iss. 8, May 2005, Pages 1037-1051.
Nässén J., Holmberg J., Wadeskog A., Nyman M., 2007. Direct and indirect energy use and carbon emissions in the
production phase of buildings: An input–output analysis, Energy, Vol. 32, Iss. 9, 1593-1602.
Nässén J, Holmberg J, 2009. Quantifying the rebound effects of energy efficiency improvements and energy
conserving behaviour in Sweden, Energy Efficiency, Springer, In Press, Available online.
Nässén J, Holmberg J, Larsson J, 2009. The effect of work hours on energy use: A micro-analysis of time and income
effects. In Proceedings to ECEEE Summer Study, La Colle sur Loup, France 1–6 June 2009.
Nässén J, Sprei F, Holmberg J, 2008. Stagnating energy efficiency in the Swedish building sector - Economic and
organisational explanations, Energy Policy, Vol. 36, Issue 10, October 2008, Pages 3814-3822.
Sprei F, 2007. Challenges for end-use energy efficiency-studies of residential heating and personal transportation in
Sweden, Licentiate thesis, Chalmers University of Technology.
Sprei F, Karlsson S and Holmberg J, 2007. Better performance or lower fuel consumption? Technological development
in the Swedish new-car fleet 1975-2002. Accepted for publication in Transportation Research Part D.
Sprei, F and Karlsson S, 2007a. Improved fuel consumption through downsizing. Rhetoric or reality? An analysis of the
Swedish new car fleet. In Proceedings to The 11th World Conference on Transportation Research, Berkeley, USA,
24-28 June 2007.
Sprei, F and Karlsson S, 2007b. The relation between technological and market development – its effects on fuel
efficiency in the Swedish new car fleet. In Proceedings to The 11th World Conference on Transportation Research,
Berkeley, USA, 24-28 June 2007.
Energianvändning (TWh/år)
450
1975
400
Bästa teknik 2000
350
Avancerad teknik 2000
300
Realiserad 2000
250
200
150
100
50
0
Sverige
Bostäder &
service
Transporter
Industri
Energianvändning (TWh/år)
450
1975
400
Bästa teknik 2000
350
Avancerad teknik 2000
300
Realiserad 2000
250
200
150
100
50
0
Sverige
Bostäder &
service
Transporter
Industri
Rebound effect: Dependency on three dimensionless
parameters
1. The price elasticity of the energy service
2. The profitability of the energy efficiency investment
(investment / break-even investment)
3. The relative energy intensity of the energy service
(in relation to the marginal energy intensity of consumption)
0.1
-0.2
0.2
-0.1
0.3
Ex. results
0
-0.25
-0.5
0.25
0
1.25
1
0.75
0.5
q/qBE
Rebound effect forTotal
private
transport
rebound
0.6
0.6
”Small car”
Energy service
price elasticity
0.5
-0.4
”Hybrid car”
0.4
0.4
-0.3
0.3
0.3
-0.2
0.2
0.2
0.1
0.1
-0.1
00
0
-0.25
0
0.25
0.5
q/qBE
Profitability
0.75
1
1.25
Quantification of rebound effects:
5 - 15 % for most investments
Low - for early adoption of expensive technologies
Low - if service demand is saturated
High - up to 50 % for downsizing options
High - for some radical innovations
Swedish household consumption and energy use, 2006
Energianvändning (GJ/cap/år)
800
700
600
500
400
300
200
100
0
0
100
200
300
400
500
600
700
800
Totala utgifter (1000 kr/cap/år)
Based on Swedish Household Budget Survey (2006) and input-output analysis of energy use
+ 10 % income  + 9 % energy use
(also in multi-variate regression)
Energianvändning (GJ/cap/år)
800
700
600
500
400
300
200
100
0
0
100
200
300
400
500
600
Totala utgifter (1000 kr/cap/år)
700
800
Energianvändning (GJ/cap/år)
800
700
600
500
400
300
200
100
0
0
100
200
300
400
500
600
Totala utgifter (1000 kr/cap/år)
700
800
Large variation
Energianvändning (GJ/cap/år)
800
700
600
500
400
300
200
100
0
0
100
200
300
400
500
600
Totala utgifter (1000 kr/cap/år)
700
800
Large variation
Energianvändning (GJ/cap/år)
800
High energy intensity
(decile)
700
600
500
400
300
Low energy intensity
(decile)
200
100
0
0
100
200
300
400
500
600
Totala utgifter (1000 kr/cap/år)
700
800
Large variation
Energianvändning (GJ/cap/år)
800
High energy intensity
(decile)
700
600
500
400
300
Low energy intensity
(decile)
200
Factor 3.5
100
0
0
100
200
300
400
500
600
Totala utgifter (1000 kr/cap/år)
700
800
Household
consumption
Medelkonsumtion
Livsmedel
Utemåltider
Alkohol & tobak
Förbrukningsvaror
Hushållstjänster, sjukvård
Kläder & skor
Bostad
El & bränslen
Möbler & inventarier
Hushållsutrustning
Inköp av fordon
Drift av fordon
Lokalresor, transporttjänster
Fritidsbostad
Tele, Radio, TV
Resor, hotell
Böcker, tidningar, TV-licens etc.
Övrig fritid
Skattepliktiga förmåner
0
50
100
150
kr per 1000 kr totala utgifter
200
250
Household
consumption
Medelkonsumtion
Livsmedel
Utemåltider
Hög marginalkonsumtion
Alkohol & tobak
Låg marginalkonsumtion
Förbrukningsvaror
Hushållstjänster, sjukvård
Kläder & skor
Bostad
El & bränslen
Möbler & inventarier
Hushållsutrustning
Inköp av fordon
Drift av fordon
Lokalresor, transporttjänster
Fritidsbostad
Tele, Radio, TV
Resor, hotell
Böcker, tidningar, TV-licens etc.
Övrig fritid
Skattepliktiga förmåner
0
50
100
150
kr per 1000 kr totala utgifter
200
250
I vilken riktning utvecklas
konsumtionen?
30
Utgiftsandelar (%)
25
Bostadsutgifter
20
Bostad Sverige
15
Fordon Sverige
10
5
Fordonsutgifter
0
0
10
20
30
Totala utgifter (USD/cap/år)
40
30
Utgiftsandelar (%)
25
Bostadsutgifter
20
Bostad Sverige
15
Fordon Sverige
?
10
5
Fordonsutgifter
0
0
10
20
30
Totala utgifter (USD/cap/år)
40
30
Utgiftsandelar (%)
25
Bostadsutgifter
20
Bostad Sverige
15
Fordon Sverige
?
10
Bostad USA
Fordon USA
5
Fordonsutgifter
0
0
10
20
30
Totala utgifter (USD/cap/år)
40
The effect of work hours on energy use
A micro-analysis of:
1.Income effects: marginal consumption of changing income
2.Time effects: marginal activity change of changing work time
Energy intensity (MJ/hr) for different activities
140
Car travel
Energy intensity (MJ/cap/hr)
120
100
80
60
40
Walking, biking
Child care
20
Work
Personal care
Entertainment, culture
Public travel
Hobbies
Domestic work
Socializing
TV, radio, etc
Sports
Energy use independent of time use
0
0
4
8
12
16
Hours per day (average)
20
Calculated from Swedish Time Use Survey (2000/2001), Swedish Household Budget Survey (2006),
and input-output analysis of energy use.
24
Marginal time use
Time use
Average
15.1
CO2eq int.
MJ/cap/h
kgCO2eq/cap/h
Marginal
Minutes/hour Minutes/hour
Time at work
Energy intensity
8.9
0.41
14.1 ***
4.4 ***
34.3
0.72
10.2
0.42
14.4 ***
3.4 **
11.5
0.48
19.4
0.98
1.3 **
5.2 ***
54.8
2.57
24.1
1.16
9.0 ***
5.0 ***
19.4
0.54
43.0
1.95
10.3
0.46
44.9
2.01
2.1
Travel - car/motorcycle
2.4 **
134.1
Significance levels: + = p < 0.1; * = p < 0.05; ** = p < 0.01; *** = p < 0.001
7.61
Domestic work
5.5
Child care
1.2
Sleep, eating, hygiene
24.6
Sports and outdoor activities
1.4
Entertainment, culture
0.2
Socializing
2.4
TV, radio, reading
5.0
Hobbies
1.1
Travel - bicycle/foot
0.8
Travel - bus/train
0.5
-60.0
1.7 **
-0.8 **
Results
Longer work hours by 1 %
Energy use
CO2 eq.
Income effect
+ 0.89 %
+ 0.87 %
Time effect
- 0.06 %
- 0.02 %
Total effect
+ 0.83 %
+ 0.85 %
•
•
Income effect >> Time effect
A change in work time by 1 % cause a change in
energy use by 0.8 % on average
Energy intensity
(J/h)
Very low (zero)
Use of appliances:
medium high
Commuting: high
Activity
Happiness
Sex
4,7
Socialising
4,0
Relaxing
3,9
Praying/meditating
3,8
Eating
3,8
Exercising
3,8
Watching TV
3,6
Shopping
3,2
Preparing food
3,2
Talking in phone
3,1
Taking care of children
3,0
Computer/internet
3,0
Housework
3,0
Working
2,7
Commuting
2,6
Energy efficiency in cars: trends,
technology, consumers and other
actors
How has technical development been used
between 85 and 02?
30
Tekniska
förbättringar
Förändring i bränsleförbrukning
Ökad service
%
Netto
viktökning
20
Högre
acceleration
10
2/3 ökad
service
Större bilar
0
1985
Fler hästkrafter/
cylindervolym
-10
-20
-30
-40
Luftmotstånd
Rullmostånd
Termisk effektivitet
Minskad friktion i drivlina
2002
1/3 minskad
bränsle-12 %förbrukning
Fuel consumption (l/100km)1985-2007
10
Bränsleförbrukning l/100 km
8
6
Alla
Bensin
4
Diesel
Flexifuel
2
0
1985
1990
1995
2000
2005
Fuel consumption (l/100km)1985-2007
10
Bränsleförbrukning l/100 km
8
Petrol
Diesel
6
Alla
Bensin
4
Diesel
Flexifuel
2
0
1985
1990
1995
2000
2005
Fuel consumption (l/100km)1985-2007
10
Flexifuel
Petrol
Diesel
Bränsleförbrukning l/100 km
8
6
Alla
Bensin
4
Diesel
Flexifuel
2
0
1985
1990
1995
2000
2005
Performance: max power (kW) 1985-2007
120
110
Effekt (kW)
100
90
Alla
Bensin
80
Diesel
70
Flexifuel
60
50
40
1985
1990
1995
2000
2005
Performance: max power(kW) 1985-2007
120
Diesel
110
Petrol
Effekt (kW)
100
90
Alla
Bensin
80
Diesel
70
Flexifuel
60
50
40
1985
1990
1995
2000
2005
Performance: max power(kW) 1985-2007
120
Flexifuel
Diesel
110
Petrol
Effekt (kW)
100
90
Alla
Bensin
80
Diesel
70
Flexifuel
60
50
40
1985
1990
1995
2000
2005
Size: weight(kg) 1985-2007
1700
1600
Vikt (kg)
1500
1400
Alla
Bensin
Diesel
1300
Flexifuel
1200
1100
1000
1985
1990
1995
2000
2005
Size: weight (kg) 1985-2007
1700
Diesel
1600
Vikt (kg)
1500
PetrolAlla
1400
Bensin
Diesel
1300
Flexifuel
1200
1100
1000
1985
1990
1995
2000
2005
Size: weight(kg) 1985-2007
1700
Diesel
1600
Vikt (kg)
1500
Flexifuel
PetrolAlla
1400
Bensin
Diesel
1300
Flexifuel
1200
1100
1000
1985
1990
1995
2000
2005
With petrol engine
201 g CO2/km
21%
Diesel cars
166 g CO2/km
With weight and power
of petrol cars
139g CO2/km
17 %
Based on data from 2007 of diesel och petrol cars with passenger space index in the range of 8500-10 000
Interview study
•
•
Demand side: 7 interviews with 9 customers
Supply side: interviews with Swedish car producers, BilSweden,
importers and dealers.
Demand side
•
•
•
It’s fun to own a car!
The same or better car as previous + environmental concern
Two environmental corncerns:
– One that acknowledges a trade off between performance
and environmental concern
– One that does not acknowledge a trade off
Demand side
Environment
Economy
Emotion
Elemental
Supply side
•
•
•
•
Customer or producer – who defines what cars are sold?
Emotions important when selling cars
Supplier acknowledge that customers have an increased
environmental concern – this is seen as a paradigm shift
There is a close relation with policy makers
Tentative conclusions
Environment
•
•
•
There is a challenge in making the
environmental concern durable
Regulations are important for long term stearing
The media attention on climate change
has acted as a facilitator for stricter regulations
Economy
Emotion
Elemental
Studies of system aspects of plug-in hybrids
(partly with AES-funding)
•
•
•
•
•
•
•
Karlsson S & Ramírez, 2007. Plug-ins – a viable efficiency option? (In Proceedings to ECEEE 2007
Summer Study: Saving energy – just do it! La Colle sur Loup, France 4–9 June 2007.)
Hedenus F, S Karlsson, C Azar, F Sprei, 2008. Electricity or hydrogen for transportation? System
interactions between the transportation and stationary sectors in a carbon constrained world. Energi
& Miljö, CTH. (I dokt. avh, Hedenus)
Göransson L, S Karlsson, F Johnsson, 2009. Integration of plug-in hybrid electric vehicles in a
regional wind-thermal power system, Energi & Miljö, Chalmers. (I lic uppsats, Göransson)
Andersson Sara-Linnéa & Anna Elofsson, 2009. Plug-in Hybrid Electric Vehicles as Control Power.
Case studies of Sweden and Germany. Examensarbete, Energi & Miljö, Chalmers.
Karlsson S, 2009. Optimal size of PHEV batteries from a consumer perspective – estimation using
car movement data and implications for data harvesting. In Proceedings to EVS24, Stavanger, May
13-16 2009.
Hedenus F, S Karlsson, C Azar, F Sprei, 2009. The transportation energy carrier of the future.
System interactions between the transportation and stationary sectors in a carbon constrained world.
In Proceedings to EVS24, Stavanger, May 13-16 2009.
Göransson, L., S Karlsson, F Johnsson, 2009. Plug-in hybrid electric vehicles as a mean to reduce
CO2 emissions from electricity production. In Proceedings to EVS24, Stavanger, May 13-16 2009.