SANS investigation of materials for high

Download Report

Transcript SANS investigation of materials for high

Scattering contrast dependence on
thermal-expansion-coefficient difference
of phases in two-phase system
P. Strunz1,2, R. Gilles3, D. Mukherji4, M. Hofmann5, D. del Genovese4,
J. Roesler4, M. Hoelzel3 and V. Davydov1
Physics Institute, CZ-25068 Řež near Prague ([email protected])
2Research Centre Řež, CZ-25068 Řež near Prague, Czech Republic
1Nuclear
3TU
München, ZWE FRM-II, Lichtenbergstr. 1, D-85747 Garching, Germany
4TU
Braunschweig, IfW, Langer Kamp 8, D-38106 Braunschweig, Germany
5TU
Darmstadt c/o FRM II, Lichtenbergstr. 1, D-85747 Garching, Germany
Outline
 Observation of SANS
intensity increase
 Theory
 Simulation
 Experiment
• diffraction
• SANS
 Prospective application
Project supported by the European Commission under the 6th Framework Programme through the Key Action:
Strengthening the European Research Area, Research Infrastructures. Contract n°: RII3-CT-2003-505925 '
May 1, 2020
1
SANS – tool for microstructural characterization
 Microstructural characterization: essential part in any alloy development
 Neutron scattering: increasingly complementing XRD, SEM, TEM
10000
DA
ST
MST
MST-1
-1
-1
d/d (cm sr )
1000
scattering caused by
 γ’ precipitates (ordered fcc L12 crystal structure)
 coherently embedded in γ
matrix (crystal structure fcc A1)
100
10
1
0.1
azimuthal average
0.01
1E-3
0.01
0.1
-1
Q (Å )

DT706 superalloy (wt.%: Fe=22,
Cr=18, Nb=2.9, Ti=1.9, Al=0.55,
C=0.03, Ni = balance)
May 1, 2020
2
SANS data intensity in “low”-temperature region
 Increase of the integral SANS intensity from γ' precipitates at low
1061K = 788°C
1107K = 834°C
and intermediate temperatures during the temperature decrease
 DT706 (SINQ, SANS-II)
 17% increase, nearly linear
PSI (SANS-II), DT706
0.014
Integral intensity (rel. units)
0.012
coolin
g
0.010
0.008
formation of
' precipitates
Integral intensity
0.006
0.004
heating
Possible cause
 volume fraction change of γ’
 change in the size
distribution of γ’ precipitates
 γ’ scattering contrast
change
0.002
400
600
800
1000
1200
1400
temperature (K)
May 1, 2020
3
scattering contrast change
 scattering length densities (SLD) m,p=[bm,p]/am,p3 (matrix, precip.)
 [bm], [bp] not changed but am, ap change with temperature
 Can it significantly change the scattering contrast?
 T    p T    m T 
2
2
 bp bm 
 3
 3 
 a T  a T  
m
 p

2
 Answer: yes, under certain circumstances
 Circumstances (fulfilled in superalloys)
 low Δ with respect to 
 high volume fraction (to make SANS visible)
May 1, 2020
4
Theory – scattering contrast
 Scattering contrast of a two-phase system
 T 
2
  p T    m T 
2
 bp bm 

 3
 3
 a T  a T  
m
 p

2
 [bm], [bp] usually unknown, but temperature independent
 known [b]alloy
 c … volume fraction of γ’ precipitates
 T 2
 1
 bp balloy 
 3





1  c(T )  a p T  vc T , c  
2
vc T , c  
1
1 c
c

am3 T  a3p T 
(
 the average unit cell volume
May 1, 2020
5
Theory - integral SANS intensity
when a part of the assymptotic (Porod) region is used:
 the shape of the scattering curve cannot change (Porod law)
 only the dependence of the specific interface and sample
thickness on the temperature has to be taken into account =>
 a p T  
  T 2
I T   C2 
 3 v T , c  
 c

2
 where all T-independent parameters are in the constant C2
 the ratio (ap/νc1/3)2 is only marginally temperature dependent
=> temperature dependence of intensity driven by numerator
in the scattering contrast form:
 bp balloy 
 3


 a T  v T , c  
c
 p

May 1, 2020
6
Scattering contrast simulation
 using lattice parameters of γ and γ’ determined in DT706
 the temperature dependence for various [Σb]p (fixed [Σb]alloy)
 volume fraction fixed (c=0.1)
2
 (T) simulation
c=0.1
balloy=3.34076E-12 cm
1E20
bp [cm]
 increasing / decreasing
3.8E-12
3.0E-12
3.55E-12
1E19
3.25E-12
3.42E-12
3.33E-12
3.38E-12
3.372E-12
3.366E-12
3.35E-12
-4
 (T) (cm )
1E18
2
1E17
1E16
3.36E-12
1E15
temperature
dependence determines
which SLD (precipitate
or matrix) is smaller
 strong correlation “curve
shape” – “magnitude of
the scattering contrast”
1E14
0
100
200
300
400
500
600
700
800
900
1000
temperature (°C)
May 1, 2020
7
Scattering contrast simulation
 volume-fraction change simulation:
 change of the curve due to [Σb]p change can be nearly
equivalently achieved by changing c
2
 (T) simulation
bp [cm]
balloy=3.34076E-12 cm
1E20
c=0.10 3.0E-12
-4
 (T) (cm )
c=0.75 3.25E-12
=>
 [Σb]p and volume
fraction of precipitates
are correlated
parameters
c=0.5 3.25E-12
c=0.25 3.25E-12
c=0.10 3.25E-12
2
1E19
c=0.01 3.25E-12
3.33E-12
1E18
0
100
200
300
400
500
600
700
800
900
1000
temperature (°C)
May 1, 2020
8
Experimental and results - Diffraction experiment
 DT706 samples
 in-situ at elevated temperatures at FRM-II (SPODI and
StressSpec)
 Initial heat treatment:
 solution treatment step at 1080°C for 2 h (dissolve γ’)
 stabilization step at 835°C for 10 h (new population of γ’
precipitates)
 In situ measurement:
 temporary stops (≤2 h) during the temperature decrease
(700, 600, 500, 400, 300, 200, 100°C, RT)
May 1, 2020
9
Measured and fitted data (n/100s)
Experimental and results - Diffraction peaks
10000
Measured intensity
Fit
Deconvoluted profile
DT706
StressSpec
311
100°C
8000
6000
2000
and 331 (SPODI)
0
103.0
103.5
104.0
104.5
105.0
105.5
106.0
106.5
107.0
Measured and fitted data (n/100s)
2 (°)
300
DT706
SPODI
331
400°C
Measured intensity
Fit
Deconvoluted profile
 instrumental profile
deconvoluted using
ProfEdgeReal program
250
200
150
 γ’ peaks: 10% of γ peaks
100
50
0
135
 Figs.: γ and γ’ double peaks
recorded at StressSpec and
SPODI
450
350
range (separation of the γ and
γ’ peaks)
 reflection 311 (StressSpec)
4000
400
 Largest accessible anglular
136
137
138
139
2 (°)
140
141
142
May 1, 2020
10
Experimental and results – lattice parameters
3.67
0.006
 Combination of the
DT706, SPODI and StressSpec results
3.66
0.005

3.64


fit
fit
0.004
3.63
0.003
3.62
3.61
0.002
misfit
3.60
0.001
misfit (dimensionless)
lattice parameter (Å)
3.65
data obtained form
both SPODI and
StressSpec
=> the evolution of the
lattice parameters
and misfit (RT-835°C)
3.59
3.58
0
200
400
600
800
1000
0.000
1200
Temperatutre (°C)
 Approximation of lattice parameter by quadratic polynomial
 am(T) = 3.585155 + 4.5891E-5×T + 2.1355E-8×T2
 ap(T) = 3.598196 + 4.1247E-5×T + 1.7052E-8×T2
[matrix]
[γ']
May 1, 2020
11
Integral intensity (neutrons / monitor count)
Experimental and results – SANS integral intensity
0.0125
PSI (SANS-II), DT706
0.0120
 SANS II, SINQ
 Porod region of the
scattering curve:
 sample-to-detector
distance 5m
 λ = 4.55 Å
-1
(11
) Q = 0.01-0.08 Å
 I(T) corrected for
background and
transmission
Data: Data1_SumoverMonCorr
Model: ScatteringIntensity
Weighting:
I
w = 1/(data1_errcorr)^2
0.0115
Chi^2/DoF
= 1.54271
R^2
= 0.96364
0.0110
 a p T  
  T 2
I T   C2 
 3 v T , c  
 c

0.0105
measured integral intensity
fit
confidence bands
0.0100
0
100 200 300 400 500 600 700 800 900
2
const
cR
Sbp
Agp
Bgp
Cgp
2.649E-22
0.14372
3.09932E-12
3.598196
4.1247E-5
1.7052E-8
±2.133E-20
±2163.1
±6.15067E-10
±0
±0
±0
temperature (°C)
 The weighted fit using the derived theory and the analytical
approximation of am(T) and ap(T) from neutron diffraction
 The fitted parameters are C2, cR and [Σb]p.
May 1, 2020
12
Integral SANS data evaluation and discussion
Tab. 1. The results of the fit for various cR
C2
(10-22
cm4 pR
cR, vol. [b]p
fraction
at RT
(10-12
cm)
neutrons/
count)
0.05
0.10
0.14372
0.15
0.20
3.0744
3.0877
3.09932
3.1010
3.1144
2.674
2.661
2.649
2.648
2.635
monitor
(109
cm-2)
[b]m
(10-12
cm)
mR (109
cm-2)
R (109
cm-2)
(R)2
(1019
cm-4)
65.942
66.227
66.476
66.512
66.800
3.35463
3.36858
3.38085
3.38262
3.39674
72.733
73.036
73.302
73.340
73.646
-6.792
-6.809
-6.826
-6.828
-6.846
4.613
4.636
4.659
4.662
4.687
 [Σb]p and cR parameters are correlated
 Nevertheless, the resulting ΔρR is very insensitive to the input
value of cR
 => scattering contrast (ΔρR)2 can be determined without a nontrivial measurement of composition of the individual phases
May 1, 2020
13
Temperature dependence of the scattering contrast
19
 scattering
5.0x10
temperature evolution
of the scattering contrast
19
-4
scattering contrast (R) (cm )
4.8x10
contrast of γ’ in γ
matrix, DT706
19
2
4.6x10
19
4.4x10
 most probable
19
4.2x10
and extreme
values of cR
scattering contrast when
cR=0.14327
19
4.0x10
19
3.8x10
cR=0.05
cR=0.20
19
3.6x10
0
100
200
300
400
500
600
700
800
900
temperature (°C)
May 1, 2020
14
Summary
 The expressions for SANS scattering contrast dependence on
temperature (no phase-composition changes) <= difference in
thermal expansions of γ and γ’ in Ni superalloys.
 Simulation: this difference is the determining factor for the (Δρ)2
temperature dependence
 The hypothesis proven by experiment on a Ni-Fe-base alloy
DT706. The evolution of lattice parameters of both phases
obtained from the in-situ wide angle neutron diffraction. The
theoretical scattering contrast dependence was then
successfully fitted to the measured SANS integral intensity.
 The magnitude of (ΔρR)2 is firmly connected with the particular
shape of the SANS integral intensity temperature dependence
=> used for the determination of the scattering contrast without
the knowledge of the compositions of the individual phases
 Investigation of superalloys with no scattering contrast at RT
May 1, 2020
15
Acknowledgments
 The authors are indebted to SINQ (PSI Villigen, Switzerland)
and FRM II (TU Muenchen, Germany) for providing the beam
time at the SANS-II facility and diffractometers StressSpec
and SPODI
 NMI3 support is acknowledged as well (6th Framework
Programme ‘Strengthening the European Research Area,
Research Infrastructures’ - contract no. RII3-CT-2003505925
 We thank the sample environment group of FRM II (A.
Schmidt and A. Pscheidt) for support during the hightemperature experiment
May 1, 2020
16
May 1, 2020
17
volume fraction temperature dependence
cT  
1
3
a
1
 a T  pR
  1
1
3
 cR
 a T  amR
3
m
3
p
May 1, 2020
18