Transcript Document

Review of
pt Fluctuations and Correlations
Duncan Prindle
Firenze, IT
July 7, 2006
A bit of history…
•
•
•
•
In the 90s we planned for a QCD phase transition
RHIC data did contain large-amplitude fluctuations
But critical fluctuations were not seen at full energy
Instead, correlations reveal copious low-Q2 partons
if you can’t get rid of the noise …
study the noise!
–Penzias and Wilson
QCD from the bottom up
Prindle
2
Agenda
•
•
•
•
Prindle
pt fluctuations, scaling and inversion
pt angular autocorrelations
Recoil response of the bulk medium
Energy dependence of pt correlations
3
COBE
WMAP
pt Fluctuations
minijets in nuclear collisions
hadron pt is drawn from local parent
blackbody
radiation
local parent
velocity correlations
h
f
collision axis
dv
dT
pt
pt
fluctuating local mean
hard component
localized on (h,f)
differently in each
p-p or Au-Au event
1) local temperature variation dT
2) local velocity variation dv
Prindle
one bang
one Au-Au event
4
pt Fluctuation Measures
s
rab º
2
a
s s
a=b

2
ab
2
pt :n
2
b
® rpt ,ab
( pt - n pˆ t )a ( pt - n pˆ t )b Pearson’s normalized
=
covariance: bins a, b
s p2ˆ t na nb
2
2
ˆ
d
x

p
d
x

n
d
x
p
/
n
d
x




   t     t    pˆ
pˆ rp ,aa STAR
2
t
t
t
scale-dependent variance difference
d ptid ptj
i j
 ( pt  n pˆ t )2 / n(n  1)   p2ˆ t 1/(n  1)
 pt 
 pt  n pˆ t 
CERES
 pt  
Prindle
2
pt :n
/ n pˆ
2
t
Fpt 


2
/ n   pˆ t
STAR
NA49
PHENIX
pt ,data
pt ,mix
 1  1   p2t ,dyn /  p2ˆ t 1/ n   1
5
pt Fluctuations – NA49
yp [4,5.5], pt<1.5 GeV/c
Φpt
17 GeV
Phys. Rev. C 70, 034902 (2004)
Phys. Lett. B459, 679 (1999)
first pt fluctuation measurements,
first search for critical fluctuations
Prindle
6
pt Fluctuations – PHENIX
Fpt
130 GeV
200 GeV
Phys. Rev. Lett. 93, 092301 (2004)
Phys. Rev. C 66, 024901 (2002)
Prindle
first RHIC fluctuation measurements
first centrality dependence
first indications of mechanism:
hard scattering
7
pt Fluctuations – CERES
Φpt
8 GeV
12 GeV
Σpt
17 GeV
Nucl. Phys. A 727, 97 (2003)
first non-zero pt measurements
first h scale dependence
first energy dependence estimate
further hints of physical mechanism
and structure of angular correlations
Σpt
Prindle
8
pt Fluctuations – STAR
200 GeV
data
130 GeV
reference
(data – ref) / data
Phys. Rev. C 71, 064906 (2005)
20
huge
effect!
scale-dependent
variance difference
Phys. Rev. C 72, 044902 (2005)
J. Phys. G 32, L37 (2006)
units of Poisson rms
what mechanisms
contribute?
Prindle
9
Inverting pt Fluctuation Scaling
how is pt distributed event-wise on (h,f)?
J. Phys. G 32, L37 (2006)
full STAR acceptance
pt autocorrelation
r/√rref
f
20-30%
subtract
multipoles
fluctuation
inversion
r/√rref
pt fluctuations
r/√rref
variance
excess
70-80%
centrality
0-5%
pt fluctuation scale dependence
inverted to pt autocorrelations
Prindle
r/√rref
J. Phys. G 31, 809 (2005)
T. A. Trainor, R. J. Porter and D. J Prindle, J. Phys. G 31, 809 (2005)
10
h
Compare with p-p pt Autocorrelations
p-p 200 GeV minbias
p-p 200 GeV nch > 9
STAR preliminary
CI=LS+US
r/√rref
r/√rref
direct – from pair counting
Hijing Au-Au 200 GeV
70-80%
data Au-Au 200 GeV
r/√rref
Phys. Lett. B 632, 197 (2006)
J. Phys. G 32, L37 (2006)
Prindle
from fluctuation inversion
r/√rref
r/√rref
CD=LS–US
isovector pt correlations
11
PID Autocorrelations – 62 GeV Au-Au
STAR preliminary
r/√rref
LS - pt
pion HBT
US pions pt
Prindle
r/√rref
LS - n
STAR preliminary
US
pt
US
US
kaons
n
US
LS protons n
12
Hijing Identified Particles
pt [0.15,1.0] GeV/c
pp LS, pt
[0.15,1.0] GeV/c
r/√rref K-K US, pt
pp n is all ‘strings’
pp US, pt
Prindle
r/√rref
K-K LS is flat
K-K US, n
p-K LS, pt
p-K n is all ‘strings’
p-K US, pt
13
PID Crosscorrelations – 62 GeV Au-Au
STAR preliminary
LS
LS
n
p-p
n
p-K
US
LS
Prindle
pt
US
US
STAR preliminary
LS
pt
US
14
K
Possible Interpretation
a
recoil?
a
pt
b
jt
b a b
a
string picture – Hijing/Pythia
contact plane
f2
df
Prindle
jty ,2
K+
STAR preliminary
K-K
US
pt
localized on thrust due to
flavor conservation low-pt cut:
large angles
f
jt / pt
data pt autocorrelation
Hijing pt autocorrelation
h
dpt
low-Q2 fragmentation picture
pt,part
kinematic limit
z

jty ,1
pt,2
ˆt
yt minijet
a
f1
yz
b
pt,1
back-to-back:
jt conservation
Hijing number
autocorrelation
K-K
US
pt
K-K
US
n
15
peak amplitudes
B1
peak widths
h
B2
data
80-90%
fit residuals
f
fit fit peak
data  fit peak
Model Fits
red shifts and blue shifts
20-30%
B1
data  fit peak
B3
B2
~ p-p
Prindle
negative structure is unanticipated –what is the origin?
16
B1
Data and Monte Carlo
B2
hijing
pQCD
hijing B1 mean participant path length
pQCD
data
Hijing does not predict strong h
broadening or negative structure
Hijing centrality dependence
deviates strongly from data
Hijing
70-80%
quench
on
quench
off
0-10%
Prindle
J. Phys. G 32, L37 (2006)
Phys. Lett. B 632, 197 (2006)
0-10%
17
Recoil Response of the QCD Medium
Au-Au – 200 GeV
red shifts and blue shifts
p-p 200 GeV
pt autocorrelations
fragments
STAR preliminary
r/√rref
low-Q2 ‘jet’
h
recoil
Au-Au 200 GeV
data  fit peak
colored
medium
p-p
A-A centrality
Hijing B1 quench-on medium response
Prindle
Hubble flow
18
pt Fluctuations – SPS  RHIC – I
fluctuation scale and energy dependence
correlation centrality and energy dependence
full STAR
acceptance
dramatic increase of per-particle
fluctuations with collision energy
Prindle
centrality
19
pt Fluctuations – SPS  RHIC – II
scale dependence
df  2p
STAR
!
Hijing
‘string’ structure in Hijing does
not appear in Au-Au data
direct comparison with CERES
pt ?
CERES
NPA727:97, 2003
STAR
df  2p
 pt   pt :n
SSC
CERES
upper limits
Prindle
dramatic increase of
pt fluctuations with
increasing sNN
 ln


sNN /10 GeV
20
Summary
• Inversion of pt fluctuations provides first access to pt
autocorrelations – direct pair-counting is also possible
• pt correlations: temperature/velocity structure of A-A
• pt correlation structure reveals complex parton
dissipation process in A-A collisions relative to p-p
• Identified-particle correlations reveal new physics
• Bulk-medium recoil response to parton stopping
• Strong energy dependence of pt fluctuations
Prindle
21


2
pt :n
2 Dynamical –
2
pt :n
δp tiδp tj .
Hijing 200 GeV Au-Au 65-85% central
( pt  n pˆ t )2

  p2ˆ t (n  1) d ptid ptj
n
scale
dependence
i j
(n-1) p2t ,dynamical
( pt  n pˆ t )2 n  n  1 
2  n  1

 




pˆ t 
n
n  n 1
n

1


n = 30
δp tiδp tj
fluctuations
r/rref (GeV/c)2
autocorrelations
physical
correlations
Prindle
**r/rref** (GeV/c)2
fluctuation
inversion
unphysical
biased
measure
doesn’t tolerate
low multiplicities
unphysical
22
Parton Dissipation and Intermediate pt
Au-Au centrality dependence
mid-central
Au-Au
transport
hydro
r/√rref
r/√rref
r/√rref
transport
RAA
6 GeV
transport
r/rref
0.15 GeV
r/√rref
r/rref
p-p
peripheral
Au-Au
central
Au-Au
2 GeV
pt angular correlations
Prindle
0.15 GeV
number correlations on pt/yt
complementary evolution of fragment correlations
on angle and on transverse momentum/rapidity
23
pt Fluctuations – Survey
NA49
yp [4,5.5], pt<1.5 GeV/c
17 GeV
PHENIX
CERES
200 GeV
Phys.Rev.Lett.93:092301,2004
8 GeV
12 GeV 17 GeV
Phys.Lett.B459, 679 (1999)
130 GeV
Phys.Rev.C70, 034902 (2004)
Nucl.Phys.A727, 97 (2003)
Prindle
Phys.Rev.C66, 024901 (2002)
24
pt Fluctuations – SPS  RHIC – II
scale dependence
full STAR acceptance
df  2p
STAR
STAR
pt ?
centrality
STAR
df  2p
 pt   pt :n
CERES
Prindle
CERES
NPA727:97, 2003
!
Hijing
dramatic increase of
pt fluctuations with
increasing sNN
 ln
‘string’ structure in Hijing does
not appear in Au-Au data


sNN /10 GeV
25
PID Autocorrelations – 62 GeV Au-Au
pt
kaons
n
Prindle
LS
US
US
US
pt
pions
LS
US
protons: pt has no structure
e-e
n
LS
protons
pions: LS is only HBT
n
US
26
PID Crosscorrelations – 62 GeV Au-Au
LS
LS
pt
US
pt
US
p-K
LS
p-p
LS
n
Prindle
n
US
no significant K-p structure
US
27
Summary
• Inversion of pt fluctuations provides first access to pt
autocorrelations – direct pair-counting is also possible
• pt correlations: temperature/velocity structure of A-A
• pt correlation structure reveals complex parton
dissipation process in A-A collisions relative to p-p
• Strong disagreement with pQCD Hijing Monte Carlo
• Bulk-medium recoil response to parton stopping
• Strong energy dependence of pt fluctuations
Prindle
29