Transcript Document
Propagating beliefs in spinglass models Yoshiyuki Kabashima Dept. of Compt. Intel. & Syst. Sci. Tokyo Institute of Technology Hayashibara@SMAPIP @ 15/7/2003 Tokyo Institute of Technology 1 Background and Motivation Active research on belief propagation (BP) in information sciences (IS) Similarity to methods in physics TMM & Bethe approx. Difference in interest Physics ⇒ obtained solutions IS ⇒ dynamics of the algorithm may cause unexpected developments in both fields Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 2 Purpose and Results Purpose:analyze dynamics of BP when employed in spin-glass models Results: Macro. dyn. of BP ⇒ RS solution Micro. stability of BP ⇔ AT condition Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 3 Outline SG model in Bayesian framework Belief propagation Macro. dyn. and RS solution Micro. stability and AT condition Summary Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 4 Spin-glass models SG models on a random (Bethe) lattice M H S | J J 1 S l lL K-body interaction C-bonds/spin Randomly constructed for other aspects 1 J0 / C J 1 J0 / C J PJ J J / C J J / C 2 2 Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 5 SM and Bayesian Statistics Boltzmann dist. = Bayes formula PJ | S M exp H S | J Z J 1 PJ | S M S exp J Sl lL PJ | S 2 cosh J PS | J 1 Magnetization = Posterior average ml Hayashibara&SMAPIP @15/7/2003 S S l exp H S | J Z J Sl PS | J S Tokyo Institute of Technology 6 Graph Expression Expression by a bipartite graph K 3 J1 J3 J2 J4 JM … PJ1 | S … … S1 Hayashibara&SMAPIP @15/7/2003 S2 S3 C 4 PS2 | J Tokyo Institute of Technology SN 7 Belief Propagation Iterative inference by passing beliefs J1 J3 J2 J4 JM … … t ml ˆ l m t … S1 Hayashibara&SMAPIP @15/7/2003 S2 S3 Tokyo Institute of Technology SN 8 More Precisely mˆ t l 1 tanh J mt k kL \ l t 1 t ml tanh tanh mˆ l M l \ t ml :Posterior average when J is left out. ˆ t l tanh 1 m : Effective field when J comes in. :Estimator mlt tanh tanh 1 mˆ t l M l Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 9 Macro. Dyn. vs. RS Solution Distribution (histogram) of beliefs x m , ˆ xˆ (1 / NC ) xˆ mˆ t l l 1 M l Known result for finite C: N x (1 / NC) t l 1 N t M l t l Tree approximation (resampling graph/update) Density evolution ⇒ RS solution K 1 K 1 t 1 t ˆ ˆ ˆ x dx x x tanh J x l l l l 1 l 1 J C 1 C 1 t 1 t x dx ˆ xˆ x tanh tanh xˆ 1 1 Richardson & Urbanke (2001) Vicente, Saad, YK (2000) Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 10 Novel Result for Infinite C Central limit theorem for infinite C Evolution of average and variance h Et exp t C 1 C 1 2 F t h dxˆ ˆ t xˆ h tanh 1 xˆ 1 1 2F t 2 Natural iteration of RS SP eqs. 2 t 1 t K 1 t 1 t K 1 , F J Q E J 0 M t t t 2 M Dz tanh F z E , Q Dz tanh Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology F z E t 11 Experimental Validation SK model(N=1000,J=1,T=0.5) J 0 1.5 (AT stable) Hayashibara&SMAPIP @15/7/2003 J 0 0.5 1 t D N (AT unstable) m N l 1 Tokyo Institute of Technology t l t 1 2 l m 12 Microscopic Instability Possible microscopic instability while BP seems to macroscopically converge Stability analysis of the fixed point ht l 1 M l \ tanh J m kL k \l 1 tanh J mk kL \ l Hayashibara&SMAPIP @15/7/2003 2 jL Tokyo Institute of Technology \l 1 m2j mj htj 13 Evolution of Perturbation Dist. of Perturb. f t y 1 / NC y ht l l 1 M l Perturbation Evolution N f t 1 f y y is attractive ⇔ the fixed point(=RS solution) is stable C 1, K 1 y dyl f t yl 1,l 1 Hayashibara&SMAPIP @15/7/2003 K 1 tanh J xl 2 C 1 K 1 1 xk l 1 y y k 2 K 1 1 k 1 xk 1 tanh J x l l 1 Tokyo Institute of Technology J , xl 14 Pictorial Expression What is performed? (t 1) th update tth update : J1 J3 J2 S1 S2 t h21 J4 S3 t h23 JM … … …S J1 J1 J3 J2 S1 S2 J4 S3 J4 JM … … … SN S1 N t 1 h21 t h24 Hayashibara&SMAPIP @15/7/2003 J3 J2 Tokyo Institute of Technology S2 S3 JM … … …S N t 1 t 1 h23 h24 15 Meaning of P. Evolution Link to known results for infinite C Central limit theorem: t 1 y a f t y exp t t 2 b 2b 2 :Gaussian dist. P. Evolution → Update of average & variance t 1 K 2 t a ( K 1 ) J M 1 Q a 0 t 1 2 K 2 2 b ( K 1 ) J Q Dz 1 tanh Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 2 Fz E b O a t t 2 16 Meaning of P. Evolution Critical conditions for growth of fluctuation K 2 1 Q 1 :Average ( K 1 ) J M 0 2 K 2 2 ( K 1 ) J Q Dz 1 tanh FzE 1 :Variance 2 For K=2 (SK model) Average → Tf: Para-Ferro transition Variance → TAT: AT condition Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 17 Analysis for finite C Is P. evolution equivalent to AT analysis even for finite C? AT analysis for finite C is complicated. But, P. evolution is (numerically) possible. K=2 (Wong-Sherrington model) Paramagnetic solution Known result Average→T C 1 tanh J 1 f J •Klein et al (1979) 2 C 1 tanh J 1 Variance→TAT •Mezard & Parisi J (1987) Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 18 Analysis for Finite C Ferromagnetic solution Numerical evaluation of Tpevol: New result! N=2000, K=2, C=4, 20000MCS/Spin D: Tpevol in Ferro phase Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 19 Summary Close relationship between BP and the replica analysis Macro. dyn. ⇒ RS solution Micro. stability ⇔AT condition This correspondence may be useful for AT analysis for SG models of finite connectivity. Application to CDMA multiuser detection (Kabashima, to appear in J. Phys. A, 2003) Hayashibara&SMAPIP @15/7/2003 Tokyo Institute of Technology 20