Presentation to the Plastics Developers Association North

Download Report

Transcript Presentation to the Plastics Developers Association North

Novel Toughening Technology
for Epoxy Thermosets
Steve Hoyles, Nikhil Verghese, Michael Ross, Marv Dettloff and Ha Pham
The Dow Chemical Company
7/17/2015
Page 1
Outline
• Self assembled toughening technology background
• Example Application Area #1: M&PC Coatings
• Example Application Area #2: Powder Coatings
7/17/2015
Page 2
Purpose: Utilize self assembled block
copolymer technology to
increase the ductility of epoxy
thermosets without negatively
impacting other properties.
7/17/2015
Page 3
There are two approaches to increased ductility…
Flexibilization
• Backbone Stiffness
• Crosslink Density
• Plasticizers and diluents
Toughening
• Interfacial strength
• Particle size
• Polydispersity
7/17/2015
Page 4
Other Technologies
Plastisizer
Embrittlement
Aliphatic
backbone
Chem Resist
Reactivity
CTBN
Core Shell
Rubbers
7/17/2015
Corrosion
Viscosity
Page 5
Flexibility versus Toughening
Toughening
0.60
0.50
Bisphenol- A Series
Bisphenol-F Series
Fracture Toughness, K1c
Toughening
0.40
Flexbilization
0.30
0.20
0.10
0.00
100
110
120
130
140
150
160
170
Tg via DMTA Tan delta
7/17/2015
Page 6
Self Assembled Block Copolymers
Copolymer
Cured epoxy
curing
Epoxy
7/17/2015
Curing agent
Page 7
Macrophase Separation (example CTBN technology)
Cure
Self Assembly (current technology)
Cure
Epoxy
7/17/2015
Curing Agent
Polymer
Page 8
Self-Assembly vs. Macrophase Separation
•
SelfAssembly
Low concentrations (5-10 vol%)
•
•
Less detrimental effect on
•
•
•
self -assemble into dispersed
morphologies
7/17/2015
•
glass transition temperature, Tg,
modulus, E
Controlled structure size
•
•
•
Can retain optical clarity
No pollution of continuous phase
Macrophase (e.g.
CTBN)
High concentrations (10-20 vol%)
• macro phase separation
Detrimental effects on
• glass transition temperature, Tg,
•
•
modulus, E
Hard to control structure size
•
loss of optical clarity
•
agglomeration
Page 9
TEM Images of Self Assembled Morphologies
Spherical Micelle
7/17/2015
Wormlike Micelle
Page 10
Second Phase Toughening Mechanism
Tensile Direction
7/17/2015
Page 11
Typical Tensile behavior
5.0E+07
4.5E+07
4.0E+07
Reduction of
yield stress
Stress (Pa)
3.5E+07
3.0E+07
2.5E+07
Modified
2.0E+07
1.5E+07
Unmodified
1.0E+07
5.0E+06
0.0E+00
0
7/17/2015
5
10
15
Strain (%)
20
25
30
Page 12
Effect on Material Properties
1.8
124
122
Toughness
Yield strength
120
1.4
118
1.2
116
1
114
0.8
112
Yield Strength (MPa)
1/2
Critical Stress Intensity, K1c (MPa.m )
1.6
0.6
110
0.4
108
0.2
106
0
104
0
5
Amount of Toughening Agent (wt.%)
7/17/2015
Page 13
Effect on Tg and Modulus
1.E+10
Results from a plaque
Storage Shear Modulus, G' (Pa)
1.E+09
1.E+08
1.E+07

DER 383 epoxy resin cured with Phenolic Hardener: CONTROL
1.E+06
Modified with 5wt.% Toughening Agent
1.E+05
0
50
100
150
Temperature (°C)
7/17/2015
200
250
300
 Trademark of The Dow Chemical Company
Page 14
Outline
• Self assembled toughening technology background
• Example Application Area #1: M&PC Coatings
• Example Application Area #2: Powder Coatings
7/17/2015
Page 15
XU19108.00
• Effective at 5-10 Vol% of total dry solids
• neat viscosity = 4000 cPs
• Density = 1.03 g/l
• 100% solids
• can be incorporated during paint grind phase or let down
7/17/2015
Page 16
Clear Coat Testing
• Ancamine 1618*
• modified IPDA adduct
• cut in benzyl alcohol
* Air Products
** Cardolite
• Ancamide 2353*
• TETA polyamide
• cut in benzyl alcohol
• NC541LV **
• phenalkamine
7/17/2015
Page 17
Clear Film Formulations
Formulation
Formulation 1
Formulation 2
Formulation 3
Formulation 4
Formulation 5
Formulation 6
D.E.R.* 331
56.4%
62.7%
56.3%
62.5%
53.9%
59.9%
Ancamine
1618
33.6%
37.3%
Ancamide
2353
33.8%
37.5%
•
Prepared by Draw Down
•
B1000 panels and free films from tin plate
•
Cured at 60°C
•
DFT = 110 +/- 5 microns
7/17/2015
NC 541LV
36.2%
40.1%
Toughening
agent
10%
0
10%
0
10%
0
Page 18
Typical Impact Testing Result
panels shown cured with Ancamine 1618
110 +/- 5 microns
7/17/2015
Page 19
Free Film Tensile Results
35%
Elongation at break
30%
25%
20%
Unmodified
Modified
15%
10%
5%
0%
Ancamine 1618
7/17/2015
Ancamide 2353
NC541LV
Page 20
Pigmented system
• Based on D.E.R. 331 cured with Ancamide 2353
• Pigmented with red iron oxide, extender and an anticorrosive
pigment
• XU19108 was added at both 6.8% and 13.3% by volume dry
paint
• Coatings spray applied on bare cold rolled steel panels
• Cured for 14 days at room temperature.
• DFT = 3.5 mils
7/17/2015
Page 21
Pigmented standard formulation
STANDARD
High Solids Epoxy Formulation Based on D.E.R. -331 Epoxy Resin and
Air Products' Ancamide 2353 Polyamide Curing Agent
Material
- Part A D.E.R.-331 Epoxy Resin
MPA-1078
BYK Anti-Terra U
10ES Wollastokup
Pounds
233.7
4.0
7.5
395.0
Gallons
24.09
0.54
0.96
16.32
NV
Pounds
233.7
1.6
5.4
395.0
NV
Gallons
24.09
0.21
0.64
16.32
Lbs.
VOM
-------2.4
2.1
--------
** High Speed Disperse to a Texture of 5-6 NS, then add: **
Xylene
- Part B Ancamide 2353 Curing Agent
MPA-1078
Beetle 216-8
Red Iron Oxide
Beaverwhite 325
Phosplus J-0866
45.0
685.2
6.21
48.12
---------635.7
----------41.26
45.0
49.5
125.6
4.0
15.0
60.0
96.7
141.4
15.21
0.54
1.72
1.44
4.20
5.07
125.6
1.6
9.0
60.0
96.7
141.4
15.21
0.21
0.84
1.44
4.20
5.07
-------2.4
6.0
----------------------
------------------434.3
------------------26.97
31.3
106.8
146.5
** High Speed Disperse to a Texture of 4.5-5.5 NS, then add: **
Diacetone Alcohol
31.3
4.00
Aromatic 150
106.8
14.69
580.8
46.87
7/17/2015
Page 22
Pigmented system Test Results
Test
PVC
VOC
Viscosity, 25°C
Sprayable vol. solids
Hardness
Dry Adhesion
Direct Impact
7/17/2015
Standard
37.5%
330.2 g/l
110 K.U.
62.2%
6H
2B
15
6.8 Vol%
38.6%
312.0 g/l
98 K.U.
64.3%
3H
4B
20
13.3 Vol%
38.6%
300.4 g/l
93 K.U.
65.7%
3H
4B
22
Page 23
Abrasion resistance
• Taber abrasion resistance is negatively impacted by the
addition of XU19108.00
• Tests run on clear coats cured for 14 days at 25°C with
Ancamide 2353 with and without the toughening agent at 10
vol% loading
• ASTM D4060, 1000 g weight
• The unmodified sample lost 66.1mg per 1000 cycles
• The modified sample lost 108.1mg per 1000 cycles
7/17/2015
Page 24
Effect on Gel and cure times
Ancamine 1618
60
• Minimal effect on gel time
50
40
• Effect is that of a non-functional
diluent
• decreases the concentration of
reactive groups
Standard
30
XU19108.00
20
10
0
Gel Time (min)
Dust Free (hours)
Through Dry
(hours)
NC541LV
Ancamide 2353
90
80
90
80
70
60
50
40
30
20
10
0
70
60
Standard
XU19108.00
Standard
40
XU19108.00
30
20
10
0
Gel Time (min)
7/17/2015
50
Dust Free (hours)
Through Dry
(hours)
Gel Time (min)
Dust Free (hours)
Through Dry
(hours)
Page 25
Significant Adhesion Improvement
5.5% modification
Ancamide 2353 cured
7/17/2015
Page 26
Salt Spray Results
There is no apparent
difference in corrosion
resistance between
the standard and the
modified system
ASTM B117, 1000 hours on cold rolled steel
Ancamide 2050 cured
7/17/2015
Page 27
Outline
• Self assembled toughening technology background
• Example Application Area #1: M&PC Coatings
• Example Application Area #2: Powder Coatings
7/17/2015
Page 28
Pipe Coating Formulation
Ingredients
4 Type epoxy resin
Dicyanodiamide curing agent
Imidazole accelerator
Wollastonite # 325 filler
Modaflow Powder III flow
modifier
Toughening agent
Control
100
1.5
1.2
45.8
1.5
Toughened
100
1.5
1.2
45.8
1.5
-
8
14.5 vol%
6.9 vol%
7/17/2015
Page 29
Pipe Coating Testing
• Formulations were dip applied
• 8”x1”x3/8” sand blasted bars
• 4 point bend at sub-ambient temperatures
• instron test frame
• number of hard cracks recorded
• Glass transition temperatures measured from free films
7/17/2015
Page 30
Test Results
Test
Tg ( °C)
Flexibility @ - 38°C / ~400 micron
thickness
Flexibility @ - 45°C / ~375 micron
thickness
Flexibility @ - 38°C / ~500 micron
thickness
7/17/2015
Control
110
10 cracks/bar avg.
Toughened
107
No cracks
12 cracks/bar avg.
No cracks
17 cracks/bar avg
No cracks
Page 31
Low Temperature
4 point bend performance
7/17/2015
Page 32
Conclusions
• Self assembled second phase toughening agents
• improved impact resistance
• improved adhesion
• without negatively affecting viscosity or Tg
7/17/2015
Page 33