Transcript Document
16.711 Lecture 3 Optical fibers Last lecture • Geometric optic view of waveguide, numeric aperture • Symmetric planar dielectric Slab waveguide • Modal and waveguide dispersion in palnar waveguide • Rectangular waveguide, effective index method 16.711 Lecture 3 Optical fibers Today • Fiber modes • Fiber Losses • Dispersion in single-mode fibers • Dispersion induced limitations • Dispersion management • The Graded index fibers 16.711 Lecture 3 Optical fibers Fiber modes --- single mode and multi-mode fibers V-number V 2a (n12 n22 )1/ 2 , Vcutoff 2a c (n12 n22 )1/ 2 2.41, Number of modes when V>>2.41 V2 M , 2 Normalized propagation constant b 2 neff n22 n12 n22 , b (1.1428 0.996/ V )2 , for V between 1.5 – 2.5. Mode field diameter (MFD) 2 w 2a (1 1 ), V 16.711 Lecture 3 Optical fibers Examples --- single mode and multi-mode fibers 1. Calculate the number of allowed modes in a multimode step index fiber, a = 100 m, core index of 1.468 and a cladding index of 1.447 at the wavelength of 850nm. Solution: V 2a (n n ) 2 1 2 1/ 2 2 91.44, V2 M 4181, 2 2. What should be the core radius of a single mode fiber that has the core index of 1.468 and the cladding index of 1.447 at the wavelength of 1.3m. Solution: V 2a (n12 n22 )1/ 2 2.4, a < 2.1m 3. Calculate the mode field diameter of a single mode fiber that has the core index of 1.458 and the cladding index of 1.452 at the wavelength of 1.3m. Solution: 2w0 2a(1 1 / V ) 10.1m, 16.711 Lecture 3 Optical fibers Fiber loss • Material absorption silica electron resonance <0.4m OH vibrational resonance ~ 2.73 m Harmonic and combination tones ~1.39 m 1.24 m, 0.95 m • Rayleigh scattering Local microscopic fluctuations in density C 4 , C~ 0.8dB/km m4 0.14dB loss @ 1.55m • Bending loss and Bending radius exp(R / Rc ), Rc a , n12 n23 16.711 Lecture 3 Optical fibers Dispersions in single mode fiber • Material dispersion vg d L | 0 , g , d vg d 2n Dm ( 2 ), c d g d d 2n ( ) ( 2 ) , L d c d g Dm L, Example --- material dispersion Calculate the material dispersion effect for LED with line width of 100nm and a laser with a line width of 2nm for a fiber with dispersion coefficient of Dm = 22pskm-1nm-1 at 1310nm. Solution: DmL 2.2ns, for the LED Dm L 44ps, for the Laser 16.711 Lecture 3 Optical fibers Dispersions in single mode fiber • Waveguide dispersion d L vg | 0 , g , d vg g d n2 (n1 n2 ) d 2 (Vb ) ( ) V , 2 L d c dV g 1.984N g 2 n2 (n1 n2 ) d 2 (Vb ) d V , ( ) , Dw c dV 2 L d (2a) 2 2cn22 g Dm L, Example --- waveguide dispersion n2 = 1.48, and delta n = 0.2 percent. Calculate Dw at 1310nm. Solution: b (1.1428 0.996/ V )2 , for V between 1.5 – 2.5. d 2 (Vb ) V 0.26, dV 2 n2 (n1 n2 ) d 2 (Vb ) Dw V 1.9 ps /(nm km), c dV 2 16.711 Lecture 3 Optical fibers • chromatic dispersion (material plus waveduide dispersion) g L ( Dm Dw ) , • material dispersion is determined by the material composition of a fiber. • waveguide dispersion is determined by the waveguide index profile of a fiber 16.711 Lecture 3 Optical fibers • Polarization mode dispersion g D p , L • fiber is not perfectly symmetric, inhomogeneous. • refractive index is not isotropic. • dispersion flattened fibers: Use waveguide geometry and index profiles to compensate the material dispersion 16.711 Lecture 3 Optical fibers • Dispersion induced limitations • For RZ bit With no intersymbol interference B 1 , 2 1/ 2 • For NRZ bit With no intersymbol interference 1 B , 1/ 2 16.711 Lecture 3 Optical fibers Dispersion induced limitations • Optical and Electrical Bandwidth B 1 , 2 1/ 2 f 3dB 0.7 B, • Bandwidth length product BL 0.25 , D 16.711 Lecture 3 Optical fibers Dispersion induced limitations Example --- bit rate and bandwidth Calculate the bandwidth and length product for an optical fiber with chromatic dispersion coefficient 8pskm-1nm-1 and optical bandwidth for 10km of this kind of fiber and linewidth of 2nm. Solution: 1/ 2 / L D 16 pskm1 , BL 0.25 36.9Gbs 1km , D f3dB 0.7B 2.8GHz, • Fiber limiting factor absorption or dispersion? Loss 0.25dB 10km 2.5dB, 16.711 Lecture 3 Optical fibers Dispersion Management • Pre compensation schemes 1. Prechirp Gaussian Pulse: 1 t A(0, t ) A0 exp[ ( ) 2 ], 2 T0 2T02 ~ 2 1/ 2 A(0, ) A0 (2T0 ) exp( ), 2 0 dk 1 d 2k k ( ) k0 | ( 0 ) | ..., d 0 2 d 2 0 k ( ) d d 2 1 ( ) 0 |0 ( 0 ) | ... 2 ( ) 2 ..., 0 1 2 0 c d d 2 i ~ ~ A( z, ) A(0, ) exp( 2 z ), 2 A0 1 ~ i 1 A( z, t ) A ( 0 , ) exp( z ) d exp[ ], 0 2 2 2 2 2T0 Q( z ) Q( z ) Q( z ) 1 2 z 2 1/ 2 i 2 z , T ( z ) [ 1 ( ) ] T0 , T02 T02 1 , T0 16.711 Lecture 3 Optical fibers Dispersion Management • Pre compensation schemes 1. Prechirp Prechirped Gaussian Pulse: 2T02 1/ 2 2T02 ~ A(0, ) A0 ( ) exp( ), 1 iC 2(1 iC ) A(0, t ) A0 exp[ (1 iC ) t 2 ( ) ], 2 T0 2 2T02 1/ 2 2T02 i ~ ~ 2 2 iCT0 2 A( z, ) A(0, ) exp( 2 z ) A0 ( ) exp[ ], 2 1 iC 2(1 C 2 ) (1 C 2 ) 1 0 (1 C 2 )1/ 2 , T0 A( z, t ) 1 2 Q( z ) 1 A0 i 1 ~ A ( 0 , ) exp( z ) d exp[ ], 0 2 2 2 2T0 Q( z ) Q( z ) (C i) 2 z C 2 z 2 2 z 2 1/ 2 , T ( z ) [( 1 ) ( 2 ) ] T0 , 2 2 T0 T0 T0 16.711 Lecture 3 Optical fibers Dispersion Management 1. Prechirp With T1/T0 = sqrt(2), the transmission distance is: C 1 2C 2 L LD , 1 C 2 LD T02 / 2 , 16.711 Lecture 3 Optical fibers Dispersion Management Examples: 1. What’s the dispersion limited transmission distance for a 1.55m light wave system making use of direct modulation at 10Gb/s? D = 17ps(km-nm). Assume that frequency chirping broadens the guassian-shape by a factor of 6 from its transform limited width. Solution: 1 5 10 11 ( s ), T0 TFWHM / 1.66 31011 s, 2B 1 0 (1 C 2 )1/ 2 , C 5.9, T0 2 2c D 2 2 , 2 24 ps / km, TFWHM T ( z ) [(1 z 12km, C 2 z 2 2 z 2 1/ 2 ) ( 2 ) ] T0 T0 , 2 T0 T0 16.711 Lecture 3 Optical fibers Dispersion compensation fiber or dispersion shifted fiber • Why dispersion compensation fiber: • for long haul fiber optic communication. • All–optical solution D1L1 D2 L2 0 • Approaches d 2n Dm ( 2 ), c d • longer wavelength has a larger index. make the waveguide weakly guided so that longer wavelength has a lower index. 16.711 Lecture 3 Optical fibers The Graded index fibers n1[1 ( / a) ]; a, n( ) a, n1(1 ) n2 ; d 2 1 dn , 2 dz n d D1L1 D2 L2 0 • 0 cos( pz) 0 ' sin( pz), Approaches p (2 / a 2 )1/ 2 , z 2 / p, Only valid for paraxial approximation General case Intermode dispersion L n1 2 , 20 3c Calculate the BL product of a grade index filber of 50m core with refractive index of n1 = 1.480 and n2 = 1.460. At 1.3 m. Solution: L n1 2 0.026ns, 20 3c BL 0.25 L 9.6Gbs 1km ,