Transcript A Deep Ocean Anti-Neutrino Observatory
A Deep Ocean Anti-Neutrino Observatory
An Introduction to the Science Potential of Hanohano Presented by Steve Dye
University of Hawaii at Manoa Hawaii Pacific University
9/14/06- S. Dye NOW 2006 1
Outline
• Neutrino Geophysics – U/Th mantle flux – Th/U ratio – Geo-reactor search • Neutrino Oscillation Physics – Mixing angles θ 12 and θ 13 – Mass squared difference Δm 2 31 – Mass hierarchy 9/14/06- S. Dye NOW 2006 2
Hawaii Anti-Neutrino Observatory
† Location flexibility – Far from continental crust and reactors for neutrino geophysics- Hawaii – Offshore of reactor for neutrino oscillation physics- California, Taiwan Technological issues being addressed – Scintillating oil studies: P = 450 atm., T = 0°C – Implosion studies at sea – Engineering studies of detector structure, deployment * † hanohano- Hawaiian for distinguished 9/14/06- S. Dye NOW 2006 3
Hanohano- 10x “KamLAND” in ocean
Construct in shipyard, fill/test in port, tow to site, and submerge to ~4 km
9/14/06- S. Dye NOW 2006 4
Preliminary reference Earth model
Knowledge of Earth interior from seismology Dziewonski and Anderson, Physics of the Earth and Planetary Interiors 25 (1981) 297-356.
9/14/06- S. Dye NOW 2006 5
Bulk silicate Earth model
Knowledge of Earth composition largely model dependent.
“Standard Model” based on 3 meteorite samples.
McDonough and Sun, Chemical Geology 120 (1995) 223-253.
9/14/06- S. Dye NOW 2006 6
Terrestrial heat flow: 31-44 TW
Present controversy over hydrothermal flow Pollack, Hurter, and Johnson, Reviews of Geophysics 31(3) (1993) 267-280.
Hofmeister and Criss, Tectonophysics 395 (2005) 159-177.
9/14/06- S. Dye NOW 2006 7
Geo-neutrinos- parent spectrum
Threshold for Reines and Cowan coincidence technique
No direction or K neutrinos yet
9/14/06- S. Dye NOW 2006 thorium chain uranium chain prompt delayed 8
Predicted geo-neutrino signal
Hanohano SNO+ Borexino KamLAND F. Mantovani et al., Phys. Rev. D 69 (2004) 013001.
Crust dominates on continents Mantle dominates in ocean
9/14/06- S. Dye NOW 2006 Simulated event source distribution Signal mostly from <500 km 9
Geo-ν + background spectra
Background manageable
μ ±
Cosmic ray muons
μ ±
Target Volume spallation products fast neutrons alpha source Radioactive materials
9/14/06- S. Dye NOW 2006 10
Hanohano: mantle measurement
1 year of Hanohano 15 years of SNO+
9/14/06- S. Dye NOW 2006
Hanohano: mantle measurement
400 300 200 100 20% in 1 year 0 -100 KLND SNO+ Bxno Hano -200 -300 Hanohano has ultimate sensitivity of <10%. Continental detectors cannot measure the mantle flux to better than 50%. Limiting factor 20% systematic uncertainty in U/Th content.
9/14/06- S. Dye NOW 2006 12
Earth Th/U ratio measurement
Project
crust type
KamLAND
island arc
Borexino
continental
SNO+
continental
Hanohano
oceanic
δR/R (1 yr exposure) 2.0
1.1
0.62
0.20
Th/U (1 yr exposure) 4 ± 8 4 ± 4 3.9 ± 2.4
3.9 ± 0.8
Years to 10% measurement 390 120 39 3.9
Statistical uncertainties only; includes reactors
9/14/06- S. Dye NOW 2006 13
Anti-neutrinos from the core?
Herndon hypothesis- natural fission reactor in core of Earth P = 1-10 TW
Controversial but not ruled out Geo-reactor hypothesis
Herndon, Proc. Nat. Acad. Sci. 93 (1996) 646.
Hollenbach and Herndon, Proc. Nat. Acad. Sci. 98 (2001) 11085.
9/14/06- S. Dye NOW 2006 14
Geo-reactor search
10 5 25 20 15
Power upper limit
0 KL Bxno SNO+ Hano ~few TW needed to drive geomagnetic field
Project
crust type
Power limit 99% CL (TW) 5σ discovery power (TW) KamLAND
island arc
Borexino
continental
SNO+
continental
Hanohano
oceanic
22 12 9 0.3
51 43 22 1.0
1 year run time statistical uncertainties only
9/14/06- S. Dye NOW 2006 15
3-ν mixing: Reactor neutrinos
P ee = 1-{cos 4 (θ 13 )sin 2 (2θ 12 )sin 2 (Δm 2 21 L/4E) + + cos 2 (θ 12 )sin 2 (2θ 13 )sin 2 (Δm 2 31 L/4E) sin 2 (θ 12 )sin 2 (2θ 13 )sin 2 (Δm 2 32 L/4E)} Each amplitude cycles with own frequency • ½-cycle measurements – mixing angles, mass-squared differences • Multi-cycle measurements – Mixing angles, mass-squared differences – Potential for mass hierarchy 9/14/06- S. Dye NOW 2006 16
Reactor ν mixing parameters: present knowledge
• KamLAND combined analysis:
tan 2 (θ 12 ) = 0.40( + 0.10/ – 0.07) Δm 2 21 =(7.9
± 0.7) × 10 -5 eV 2
Araki et al., Phys. Rev. Lett. 94 (2005) 081801.
• CHOOZ limit: sin
2 (2θ 13 ) ≤ 0.20
Apollonio et al., Eur. Phys. J. C27 (2003) 331-374.
• SuperK and K2K:
Δm 2 31 =(2.5
± 0.5) × 10 -3 eV 2
Ashie et al., Phys. Rev. D64 (2005) 112005 Aliu et al., Phys. Rev. Lett. 94 (2005) 081802 9/14/06- S. Dye NOW 2006 17
ν
e
flux measurement uncertainty
• Flux from distant, extended source like Earth or sun is fully mixed • P(ν e → ν e ) = 1-0.5{cos 4 (θ 13 )sin 2 (2θ 12 ) + sin 2 (2θ 13 )} = 0.592 ( + 0.035/-0.091) Lower value for maximum angles Upper value for minimum angles • Φ source = Φ detector /P(ν e → ν e ) Uncertainty is +15%/-6% 9/14/06- S. Dye NOW 2006 18
Suggested ½-cycle θ
12
measurement
• Reactor experiment- ν e point source • P(ν e → ν e ) ≈ 1-sin 2 (2θ 12 )sin 2 (Δm 2 21 L/4E) • 60 GW·kT·y exposure at 50-70 km – ~4% systematic error from near detector – sin 2 (θ 12 ) measured with ~2% uncertainty Bandyopadhyay et al., Phys. Rev. D67 (2003) 113011.
Minakata et al., hep-ph/0407326 Bandyopadhyay et al., hep-ph/0410283 9/14/06- S. Dye NOW 2006 19
Proposed ½-cycle θ
13
measurements
• Reactor experiment- ν e point source • P(ν θ 13 e → – sin 2 ν e (2θ ) ≈ 13 ) 1-sin ≤ 2 (2θ 13 )sin 2 (Δm – Solar and matter insensitive 2 31 L/4E) • Double Chooz, Daya Bay, Reno- measure with “identical” near/far detector pair 0.03-0.01 in few years – Challenging systematics Mikaelyan and Sinev, Phys. Atom. Nucl. 62 (1999) 2008-2012.
Anderson et al., hep-ex/0402041 9/14/06- S. Dye NOW 2006 20
Reactor antineutrino spectra- 50 km
Plots by jgl no oscillation Energy, E no oscillation Distance/energy, L/E oscillations oscillations Neutrino energy (MeV) L/E (km/MeV)
1,2 oscillations with sin 2 (2θ 12 )=0.82 and Δm 2 21 =7.9x10
-5 1,3 oscillations with sin 2 (2θ 13 )=0.10 and Δm 2 31 =2.5x10
-3
9/14/06- S. Dye NOW 2006
eV 2 eV 2
21
Fourier Transform on L/E to Δm
2 Plots by jgl Fourier Power, Log Scale Δm 2 32 < Δm 2 31 normal hierarchy Peak due to nonzero θ 13 Spectrum w/ θ 13 =0
Δm 2 (x10 -2 eV 2 )
Δm 2 /eV 2 Includes energy smearing- 3.5%/ √E 9/14/06- S. Dye NOW 2006
Preliminary-
10 kt-y exposure at 50 km range sin 2 (2 θ 13 )≥0.05
Δm 2 31 =0.0025 eV 2 Learned, Pakvasa, Svoboda, SD preprint in
preparation
to % level 22
Neutrino mass hierarchy- reactor neutrinos m 3 m 2 m 1 normal
| Δm 2 31 | > | Δm 2 32 |
m 2 m 1 m 3 inverted
| Δm 2 31 | < | Δm 2 32 | Exposure and energy resolution are critical for this determination are currently under study
Δm 2 32 ≈ (1.00 ± 0.03) Δm 2 31 Petcov and Piai, Phys. Lett. B533 (2001) 94-106.
9/14/06- S. Dye NOW 2006 23
Hanohano candidate reactor sites
San Onofre- ~6 GW th Maanshan- ~5 GW th 9/14/06- S. Dye NOW 2006 24
Hanohano- 10 kT-y exposure
• Neutrino Geophysics- near Hawaii – Mantle flux U/Th geo-neutrinos to ~25% – Measure Th/U ratio to ~20% – Rule out geo-reactor of P > 0.3 TW • Neutrino Oscillation Physics- ~60 km by reactor – Measure sin 2 (θ 12 ) to few % w/ standard ½-cycle – Measure sin 2 (2θ 13 ) down to ~ 0.05 w/ multi-cycle – Δm 2 31 at percent level w/ multi-cycle – potential for mass hierarchy if θ complimentary to Minos, Nova 13 >0 without near detector; insensitive to background, systematics; 9/14/06- S. Dye NOW 2006 25
Conclusion
• Hanohano – 10 kT deep ocean anti-neutrino observatory – Movable for multi-disciplinary science • Neutrino geophysics • Neutrino oscillation physics – Under development at Hawaii; continuing funding from U.S. Department of Defense – 1 st collaboration meeting 3/07 Interested? [email protected]
9/14/06- S. Dye NOW 2006 26