Theory of the Quantum Mirage

Download Report

Transcript Theory of the Quantum Mirage

Theory of the Quantum Mirage

*

Oded Agam Avraham Schiller The Hebrew University

* Phys. Rev. Lett. 86, 484 (2001)

The Kondo Effect

Impurity moment in a metal

High temperatures: Free moment Low temperatures: Local singlet The impurity spin is progressively screened below a nonperturbative temperature

T K

For

T

, a sharp Kondo resonance develops in the Impurity DOS at the Fermi level Resonance never observed for an isolated impurity

Formation of a local moment: The Anderson model

t

e d

+ U

|e d

|

H imp

 e

d

 

n

 

Un

n

 

hybridization with conduction electrons

The Anderson model -

continued Many-body Kondo resonance

e d

E F

e d +U

Cobalt atoms deposited onto Au(111) at 4K (400A x 400A) Madhavan

et al.,

Science

280

(1998)

STM spectroscopy on and off a Co atom Madhavan

et al.,

Science

280

(1998)

STM spectroscopy across one Co atom Madhavan

et al.,

Science

280

(1998)

STM tip Fano Resonance (Fano ‘61)

dI

/

dV

 ( e e 2 

q

) 2  1

q =

Interference parameter Interacting level: Madhavan

et al.

’98, AS & S. Hershfield ’00, Ujsaghy

et al.

’01

Co on Cu(111) Manoharan

et al.

, Nature (2000)

An empty ellipse

Topograph image dI/dV map

Manoharan

et al.

, Nature (2000)

Quantum Mirage

Extra adatom at focus: Quantum mirage Extra adatom away from focus: No quantum mirage

Quantum Mirage: Spectroscopic fingerprint

Recap of the main experimental findings: 1.

There is a quantum mirage when a Co atom is placed at one of the foci.

2. No mirage when the Co atom is placed away from the foci.

3.

The quantum mirage oscillates with 4

k F a

.

4.

The magnitude of the mirage depends only weakly on the ellipse eccentricity.

Theoretical model 1.

Cu(111) surface states form a 2DEG with a Fermi energy of

E F

=450meV and

k F

-1 =4.75 angstroms.

2.

Free 3D conduction-electron bulk states.

3.

Each Co atom is modeled by a nondegenerate Anderson impurity.

Ujsaghy

et al.,

PRL (2000) 4.

Hybridization with both surface and bulk states.

H

H bulk

H surface

i N

  0

H imp

( 

R i

)

H imp

( 

R i

)    

t b d i

   e

d

 

d i

 

d i

 

b

,  

Ud i

 

d i

d i

 

d i

 ( 

R i

) 

t s d i

  

s

,  ( 

R i

) 

h

.

c

.

 { Perimeter Co adatoms i=1,…,N Inner Co adatom i=0

Consider an STM tip placed above the surface point

r

 dI/dV measures the local surface-electron DOS  (

r

 , e )   1  Im 

G

(

r

 ,

r

 ; e )   (

r

 , e )   (

r

 , e )   (

r

 , e ) Contribution to LDOS due to inner adatom

 (

r

 , e )   1  Im 

G e

(

r

 , 

R

0 ; e )

t s G d

( e )

t s G e

( 

R

0 ,

r

 ; e )  Propagator for an empty ellipse 

R

0 Fully dressed

d

propagator  

R

0 2

a

1 

e

2 2a

Assumptions: 1. Neglect inter-site correlations: Distance between neighboring Co adatoms is large (about 10 angstroms).

2. Only 2D propagation: 1

kr

1 (

kr

) 2

Each Co adatom on the ellipse acts as a scatterer with a surface-to-surface

T

-matrix component

T

( e ) 

t s

2

G d

( e ) From theory of the Kondo effect, for

T

close to

E F T

( e ) 

t



s

 e 

E T K F

 and

iT K t =

The probability for surface scattering 1-

t t

G e

(

r

 ,

r

 ' ) 

G

0 (

r

 ,

r

 ' ) 

i

,

j N

  1

G

0 (

r

 , 

R i

)   1  1

Tg T

 

ij G

0 ( 

R j

,

r

 ' ) Where

G

0 (

r

 ,

r

 ' )  

i



s H

0 ( 1 ) 

k r

 

r

 '  is the free 2D propagator

g ij

 ( 1  

ij

)

G

0 ( 

R i

, 

R j

) is an N x N matrix propagator

T

( e ) 

t s

2

G d

( e ) is the surface-to-surface

T

-matrix at each Co site

Numerical results  (

r

 ,

E F

) for

t

 1 / 2

Theory Experiment

Magnitude of the projected resonance Expand

G e

( 

R

0 ,  

R

0 ;

E F

) in the number of scatters: Direct path

G e

(  

R

0 , 

R

0 ) 

G

0 (  

R

0 , 

R

0 ) 

j N

  1

G

0 (  

R

0 , 

R j

)

t i



s G

0 ( 

R j

, 

R

0 )  Scattering off several cobalt atoms – add incoherently!

Scattering off one Co atom,

G 1

Using

G

0 (

r

 ,

r

 ' )  

i

s

  | 2 

r

k F

 

r

 exp |'

ik F

 

i

 4

G

1  

s

2

t k F j N

  1  

s

2

t k F d

 1 exp 

i

2

k F a

  1 ,

j

 2 ,

j

 1

e i

2

k F a

(

s

)  2 (

s

)

ds

 

s

4 

t k F d e i

2

k F a

Mean distance between adjacent adatoms

Conclusion:

G 0

is negligible compared to

G

1 provided

d ea

 16 

t

2

k F d

Satisfied experimentally for all 0.05<

e

<1.

 (  

R

0 ,

E F

)  

s

16

t

3 (

k F d

) 2 cos( 4

k F a

) Independent of the eccentricity!

Effect of ``weak`` magnetic field Magnetic field introduces an additional Aharonov Bohm phase:

j N

  1 1  1 ,

j

 2 ,

j

j N

  1 1  1 ,

j

 2 ,

j

exp 

i

2 

j

/  0  Aharonov-Bohm phase  (

B

)   ( 0 )

J

0 2   2

e AB

 0   Quantum flux

A

= Area of ellipse

Conclusions STM measurements of magnetic impurities on metallic surfaces offer a unique opportunity to study the Kondo effect.

Detailed theory presented for the quantum mirage, which explains the 4

k F a

oscillations and the weak dependence on the eccentricity.

Distinctive oscillatory behavior of the mirage is predicted in an applied perpendicular magnetic field.