Low-Noise Amplifier

Download Report

Transcript Low-Noise Amplifier

Low-Noise Amplifier
1
RF Receiver
Antenna
BPF1
LNA
BPF2
Mixer BPF3 IF Amp
Demodulator
RF front end
LO
2
Low-Noise Amplifier
• First gain stage in receiver
– Amplify weak signal
• Significant impact on noise performance
– Dominate input-referred noise of front end
NFfrontend  NFLNA 
NFsubsequent  1
GLNA
• Impedance matching
– Efficient power transfer
– Better noise performance
– Stable circuit
3
LNA Design Consideration
•
•
•
•
•
•
•
Noise performance
Power transfer
Impedance matching
Power consumption
Bandwidth
Stability
Linearity
4
Noise Figure
• Definition
SNRin
Sin Nin
NF 

SNRout Sout N out
• As a function of device
N device  G  N source
NF 
G  N source
G: Power gain of the device
5
NF of Cascaded Stages
Sin/Nin
Sout/Nout
G1, N1,
NF1
Gi, Ni,
NFi
GK, NK,
NFK
NF2  1 NF3  1
NFK  1
NF  1  NF1  1 

 ...
G1
G1G2
G1G2...GK 1
• Overall NF dominated by NF1
[1] F. Friis, “Noise Figure of Radio Receivers,”
Proc. IRE, Vol. 32, pp.419-422, July 1944.
6
Simple Model of Noise in MOSFET
k
• Flicker noise V ( f )  WLC f
ox
– Dominant at low frequency
2
g
Vg
Id
Vi
• Thermal noise Id2 ( f )  4kTg gm
– g: empirical constant
2/3 for long channel
much larger for short channel
– PMOS has less thermal noise
• Input-inferred noise
Vi 2 ( f )  4kT
g
gm

k
WLC ox f
7
Noise Approximation
Noise spectral
density
1/f noise
Thermal noise
dominant
Thermal noise
Band of interest
Frequency
8
Power Transfer and Impedance Matching
• Power delivered to load
Rs
Vs
I
2
jXs
Vs
Pdel 
RL
Rs  jX s  RL  jX L
jXL
V
RL
• Maxim available power
VsVs*
Pmax  PL R R , X  X 0 
4Rs
s
L
s
L
• Impedance matching
– Load and source impedances conjugate pair
– Real part matched to 50 ohm
9
Available Power
Equal power on load
and source resistors
10
Reflection Coefficient
Rs
Vs
jXs
I
V  IZL
jXL
V
RL
I I * ( Z L  Z L* )
Pdel 
2
VsVs* (V  IZs )(V  IZs )*
Pmax 

 aa*
4 Rs
4Rs
(V  IZs* )(V *  I *Z s )
Pref  Pmax  Pdel 
 bb*
4Rs
V  IZs
a
2 Rs
V  IZs*
b
2 Rs
b Z L  Z s*
 
a ZL  Zs
11
Reflection Coefficient
No reflection
Maximum power transfer
12
S-Parameters
• Parameters for two-port system analysis
• Suitable for distributive elements
• Inputs and outputs expressed in powers
– Transmission coefficients
– Reflection coefficients
13
S-Parameters
a1
b2
S21
S11
S22
S12
b1
b1  S11a1  S12 a2
a2
b2  S 21a1  S22 a2
14
S-Parameters
b1
S11 
a1 a 20
• S11 – input reflection coefficient with
the output matched
b2
S 21 
a1 a 20
• S21 – forward transmission gain or
loss
b1
S12 
a2
a10
• S12 – reverse transmission or
isolation
a10
• S22 – output reflection coefficient with
the input matched
b2
S 22 
a2
15
S-Parameters
I1
Z1
Vs1
S
V1
Z2
V2
V1  I1Z1*
S11 
V1  I1Z1 V
Vs2
V2  I 2 Z 2* Re(Z1 )
S21 
V1  I1Z1 Re(Z 2 ) V
s 2 0
V1  I1Z1*
S12 
V2  I 2 Z 2
I2
s 2 0
Re(Z 2 )
Re(Z1 ) V
s 1 0
V2  I 2 Z 2*
S22 
V2  I 2 Z 2 V
s 1 0
16
Stability Condition
• Necessary condition
1 | S22 |2  | S11 |2  |  S |2
K
1
2 | S12 S21 |
where
• Stable iff
S  S11S22  S12 S21
|  S |2  L  L  1
where
| S11 |2  | S22 |2
L  | S12 S21 | 
2
17
A First LNA Example
Rs
io
–
–
–
–
Vs
Rs 4kTRs
Vs
• Assume
Vgs
gmVgs
No flicker noise
ro = infinity
Cgd = 0
Reasonable for appropriate
bandwidth
• Effective transconductance
io gm  Zin
Gmeff  
Vs Rs  Zin
4kTgg
m
18
Power Gain
• Voltage input
• Current output
ii
g m  Z in
2
G
| Gmeff | 
*
VsVs
Rs  Z in
*
o o
g m 1 ( jC gs )
2
2
2
gm


Rs  1 ( jC gs )
1  jRs C gs
 T 1 
g


 
2
2
1   ( Rs C gs )
  Rs 
2
m
2
19
Noise Figure Calculation
• Power ratio @ output
– Device noise + input-induced noise
– Input-induced noise
N device  G  N in
NF 
 1
G  N in
 1
 1
g
Rs g m
g
Rs g m
4kTg g m
g m2
4kTRs
1   2 ( RsCgs ) 2
(1   2 Rs2Cgs2 )
 gRs g m
2
( g m / Cgs ) 2
gm
T 
C gs
20
Unity Current Gain Frequency
iin
Device
iout  
Ai 
iin  
Ai  
T
i ω 
 out T  1
iin ωT 
iout
Ai
fT
0dB
frequency
f
21
Small-Signal Model of MOSFET
i2
i1
V1
i1
Rg
Cgs
V1
V2
i2
Cgd
V’gs
ri rds
Cdb
V2
•
•
•
•
•
•
Cgs
Cgd
rds
Cdb
Rg: Gate resistance
ri: Channel charging
resistance
gmV’gs
22
T Calculation
i1
Rg
Cgs
V1
i2
Cgd
V’gs
ri rds
Cdb
i1
Rg
Cgs
gmV’gs
V1
Cgd
i2
V’gs
ri
gmV’gs
s(Cgs  Cgd )  s 2 riCgsCgd
I1
Y11 

V1 V 0 1  s(Cgs  Cgd ) Rg  sriCgs  s 2 Rg riCgsCgd
2
g m (1  sriCgs )  sC gd  s 2 riCgsCgd
I2
Y21 

V1 V 0 1  s(Cgs  Cgd ) Rg  sriCgs  s 2 Rg riCgsCgd
2
23
T of NMOS and PMOS
Set:
Y11 ( j T )
Y21 ( j T )
• 0.25um CMOS Process*
1
Solve for T
gm
T 
 gm
Cgs  Cgd 
[2] Tajinder Manku, “Microwave CMOS - Device Physics and Design,”
IEEE J. Solid-State Circuits, vol. 34, pp. 277 - 285, March 1999.
24
Noise Performance
g
2
NF  1 
 g Rs gm 2
Rs gm
T
• Low frequency
– Rsgm >> g ~ 1
– gm >> 1/50 @ Rs = 50 ohm
– Power consuming
• CMOS technology
– gm/ID lower than other tech
– T lower than other tech
25
Review of First Example
• No impedance matching
– Capacitive input impedance
– Output not matched
• Power transfer
– S11=(1-sRCgs)/(1+sRCgs)
– S21=2Rgm/(1+sRCgs), R=Rs=RL
• Power consumption
– High power for NF
– High power for S21
26
Impedance Matching for LNA
•
•
•
•
Resistive termination
Series-shunt feedback
Common-gate connection
Inductor degeneration
27
Resistive Termination
io
Rs
Vs
RI
4kTggm
4kT/Rs 4kT/RI
Is
Rs
RI
Vgs
gmVgs
• Current-current power gain
2
gm
G
1/ Rs  1/ RI  j Cgs
• Noise figure
2
Rs g Rs  1
1 
2
    g g m Rs 2
NF  1  
RI
g m  Rs RI 
T
28
Comparison with Previous Example
• Previous example
g
2
NF  1 
 g Rs gm 2
Rs gm
T
• Resistive-termination
2
Rs
g  Rs 
2
1    g g m Rs 2
NF  1  
RI g m Rs  RI 
T
Introduced by input
resistance
Signal attenuated
29
Summary - Resistive Termination
• Noise performance
– Low-frequency approximation
– Input matched Rs = RI = R
4g
NF  2 
gm R
•
•
•
•
Broadband input match
Attenuate signal
Introduce noise due to RI
NF > 3 dB (best case)
30
Series-Shunt Feedback
RF
• Broadband matching
RL
Rs
Rin 
Vs
Ra
Rs
Cgs
Vs
1  gm ( RL  Ra )  s( Ra  RF  RL )Cgs
Rout 

iout
RF
Vgs
( RF  RL )(1  gm Ra  sRaCgs )
gmVgs
RL
(1  g m Ra )(RF  Rs )
1  ( g m  sC gs )(Rs  Ra )
sC gs ( Ra RF  Rs RF  Ra Rs )
1  ( g m  sC gs )(Rs  Ra )
• Could be noisy
Ra
31
Common-Gate Structure
Rs
RL
Rs 4kTRs
Vgs gmVgs
Vs
I out
Geff 
Vs
 gm

1  g m Rs  sRs Cgs
Rs 4kTRs
Vs
4kTggm
RL
Vgs
RL
gm
gmVgs
4kTggm
32
Input Impedance of CG Structure
• Input impedance
Yin=gm+sCgs
• Input-impedance matching
– Low frequency approximation
– Direct without passive components
1/gm=Rs=50 ohm
33
Noise Performance of CG Structure
G  Geff
2
gm2

(1  gm Rs )2   2 ( Rs Cgs )2
N device  G  N in
NF 
 1
G  N in
 1
g
Rs g m
(1  g
4kTg g m
g m2
4kTRs
(1  g m Rs ) 2   2 ( RsC gs ) 2
2
2 2 2
R
)


Rs C gs
m s

2
 1  4g  g 2
T
Signal attenuated
34
Power Transfer of CG Structure
• Rs = RL = R = 50 ohm
Z in  Z s* 1  g m Rs  sRsC gs
S11 

Z in  Z s 1  g m Rs  sRsC gs

 sRsC gs
2  sRsC gs
2 RL g m
S21  2 RLGeff 
1  g m Rs  sRsCgs
2

2  sC gs
• S11=0, S21=1 @ Low frequency
35
Summary – CG Structure
• Noise performance
– No extra resistive noise source
– Independent of power consumption
• Impedance matching
– Broadband input matching
– No passive components
• Power consumption
– gm=1/50
• Power transfer
– Independent of power consumption
36
Inductor Degeneration Structure
Rs
Rs
Lg
Zin
iin
Vs
Ls
Vs
iout
Lg
Cgs
Vin
Vgs
gmVgs
Ls
1
Vin  I insLg  I in
 ( I in  g mVgs ) sLs
sC gs
1
1
 I insLg  I in
 ( I in  g m I in
) sLs
sC gs
sC gs

1
g m Ls 
 I in  s( Lg  Ls ) 


sC gs Cgs 

Zin
37
Input Matching for ID Structure
Rs
Zin
Vs
Ls
Cgs
gmLs/Cgs
• Zin=Rs
iout
Lg
Vgs
gmVgs
1
gm Ls
Zin  s( Lg  Ls ) 

sCgs Cgs
– IM{Zin}=0
1
 
( Lg  Ls )Cgs
– RE{Zin}=Rs
g m Ls
 Rs
Cgs
2
0
38
Effective Transconductance
Rs
Vs
Zin
Ls
gmLs/Cgs
iout
Lg
Cgs
Vgs
gmVgs
I out g m ( sC gs )
Geff 

Vs
Rs  Zin
gm

1  s( RsCgs  g m Ls )  s 2Cgs ( Lg  Ls )
39
Noise Factor of ID Structure
G  Geff
2
gm2

[1   2Cgs ( Lg  Ls )]2   2 ( RsCgs  gm Ls )2
• Calculate NF at 0
NF  
0
 1
N device  G  Nin

 1
G  Nin
g
Rs g m
= 0 @ 0
4kTg g m
g m2
4kTRs 2
 ( RsCgs  g m Ls )2
 2 ( RsCgs  g m Ls )2
40
Input Quality Factor of ID Structure
I
R
C
V
Rs
Vs
Stored power
Q
Lost power
L
Ls
gmLs/Cgs
I I * C
1


I I *R
CR
1
1
Qin 

CR C gs ( Rs  g m Ls / C gs )
Lg
Cgs
1
1


 ( Rs C gs  g m Ls ) 2Rs C gs
41
Noise Factor of ID Structure
1
Qin 
 ( RsCgs  gm Ls )
• Decrease NF
gmLs/Cgs = 0
NF  
0
 1
g
Rs g m
g
• Increase power transfer
gmLs/Cgs = Rs
 2 ( RsCgs  g m Ls ) 2
1
 1
Rs g m Qin2
• Conflict between
– Power transfer
– Noise performance
42
Further Discussion on NF
NF  
 1
0
g
Rs g m
 2 ( RsC gs  g m Ls ) 2
4( g m Ls ) 2
1
 1 g
Rs g m C gs ( Lg  Ls )
4g Ls
 1
Lg  Ls
• Frequency @ 0
2 ~= 1/Cgs/(Lg+Ls)
• Input impedance
matched to Rs
RsCgs=gmLs
Ls  Rs T
• Suitable for hand
calculation and design
• Large Lg and small Ls
Ls  Lg  1 02Cgs
43
Power Transfer of ID Structure
• Rs = RL = R = 50 ohm
2
Zin  Z s* 1  s Cgs ( Lg  Ls )  sg m Ls  sRsCgs
S11 

Zin  Z s 1  s 2Cgs ( Lg  Ls )  sg m Ls  sRsCgs

1  s 2Cgs ( Lg  Ls )
1  s( g m Ls  RsCgs )  s 2Cgs ( Lg  Ls )
2 gm RL
S21  2Geff RL 
1  s( RsCgs  gm Ls )  s 2Cgs ( Lg  Ls )
• @  20 
1
( Lg  Ls )Cgs
1
Qin 
 ( RsCgs  gm Ls )
2 g m RL
T RL
S11  0; S 21 
  j 2 g m RLQin   j
j0 ( Rs Cgs  g m Ls )
0 Rs
44
Computing Av without S-Para
Rs
Lg
Vs
Ls
At resonanceand imput match: Z in  Rs
I in  Vs 2 Rs ;
I o  g mVgs  g m I in j0C gs
I o  g mVs 2 j0C gs Rs   jVsT 20 Rs
Vo
T
1/ 2
Av 
j
Vs
0 Rs (Yo  Yo )
45
Power Consumption
P  I DVDD 
 Cox W
2
L
(Vgs  VT ) 2 VDD
W
g m   Cox (Vgs  VT )
L
C gs 
g m2 L2 3
W
2
  Cox Vgs  VT 
Cgs  2
L
2
CoxWL
3
g m Ls
Rs 
Cgs
gm 
RsCgs
Ls
g m2 L2
L2 Rs2
L2 Rs2
VDD
P
VDD 
C gsVDD 
2
3C gs 
3 Ls
3 L2s 02 ( Lg  Ls )
2
 L
1  T  L2VDD
1 L2 Rs2
VDD


P
C gsVDD 

 2 3


3
3  0  ( Lg  Ls ) 3  0 Ls (1  Lg / Ls )
2 2
T
46
Power Consumption
L2
Rs2
1
P  2  3
 0 Ls (1  Lg / Ls )
NF  
0
4g Ls
 1
Lg  Ls
• Technology constant
– L: minimum feature size
– : mobility, avoid mobility saturation region
• Standard specification
– Rs: source impedance
– 0: carrier frequency
• Circuit parameter
– Lg, Ls: gate and source degeneration inductance
47
Summary of ID Structure
• Noise performance
– No resistive noise source
– Large Lg
• Impedance matching
– Matched at carrier frequency
– Applicable to wideband application, S11<-10dB
• Power transfer
– Narrowband
– Increase with gm
• Power consumption
– Large Lg
48
Cascode
LL
Vbias
Rs
M2
• Isolation to improve S12
@ high frequency
Vo
Vd1
Lg
M1
Vs
Ls
– Small range at Vd1
– Reduced feedback effect
of Cgd
• Improve noise
performance
49
LL
Rs
Rs
Vo
Lg
Vs
Ls
Vo
Cgs
M1
Vs
Lg
Ls
Vgs
gmVgs
LL
50
LNA Design Example (1)
M4
Vbias
Rs
Vs
Lb1
Cb1
Input
bias
Vdd
Lvdd
Lb2
Cb2 V
out
Ld
Lout
Output
bias
M2
M3
Tm
Cm
Lg
M1
Lgnd
Ls
Off-chip
matching
[3] D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid51
State Circuits, vol. 32, pp. 745 – 759, May 1997.
LNA Design Example (1)
Supply
filtering
Lvdd
M4
Ld
Vbias
Rs
Vs
Lb1
Cb1
Lout
M2
M3
Tm
Cm
Lg
M1
Lgnd
Ls
Unwanted
parasitics
[3] D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid52
State Circuits, vol. 32, pp. 745 – 759, May 1997.
Circuit Details
• Two-stage cascoded structure in 0.6 m
• First stage
– W1 = 403 m determined from NF
– Ls accurate value, bondwire inductance
– Ld = 7nH, resonating with cap at drain of M2
• Second
– 4.6 dB gain
– W3 = 200 m
53
54
LNA Design Example (2)
NF = 1 + K/gm
gm = gm1 + gm2
RB
IREF
IB1
M2
Vout1
NL
RX
VRF
Ns
Off-chip
matching
M1
Cs
CB
M4
VB1
M5
CX
Off-chip
matching
M7
M3
M6
[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State
Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.
55
Simplified view
56
LNA Design Example (2)
M8
RB
IREF
IB1
M2
Vout1
NL
RX
VRF
Ns
M1
Cs
CB
M4
VB1
M5
CX
M7
M3
M6
Bias
feedback
[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State
Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.
57
LNA Design Example (2)
M8
RB
IREF
IB1
M2
Vout1
NL
RX
VRF
Ns
M1
Cs
CB
M4
VB1
M5
CX
M7
M3
M6
Bias
feedback
[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State
Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.
58
LNA Design Example (2)
VA
M8
RB
IREF
IB1
M2
Vout1
NL
RX
VRF
Ns
M1
Cs
CB
DC output = VB1
M4
VB1
M5
CX
M7
M3
M6
Bias
feedback
[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State
Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.
59
60
LNA Design Example (3)
•
Objective is to design tunable RF LNA that
would:
–
–
Operate over very wide frequency range with very fine
selectivity
Achieve a good noise performance
–
Have a good linearity performance
–
Consume minimum power
61
LNA Architecture
• The cascode architecture
provides a good input –
output isolation
• Transistor M2 isolates the
R1
Miller capacitance
• Input Impedance is obtained
using the source
M3
degeneration inductor Ls
R2
• Gate inductor Lg sets the
resonant frequency
• The tuning granularity is
LG
Input to LNA
achieved by the output
matching network
VDD
LD
M2
M1
Matching
Network
Output to
Mixer
LS
62
Matching Network
• The output matching tuning
network is composed of a
varactor and an inductor.
• The LC network is used to
convert the load impedance
into the input impedance of
the subsequent stage.
• A well designed matching
network allows for a
maximum power transfer to
the load.
• By varying the DC voltage
applied to the varactor, the
output frequency is tuned to
a different frequency.
63
Simulation Results - S11
• The input return loss
S11 is less than – 10dB
at a frequency range
between 1.4 GHz and
2GHz
Input return loss
64
Simulation results - NF
• The noise figure is 1.8
dB at 1.4 GHz and rises
to 3.4 dB at 2 GHz.
Noise Figure
65
Simulation Results - S22
• By controlling the voltage applied to the varactor the output frequency
is tuned by 2.5 MHz.
• The output return loss at 1.77 GHz is – 44.73 dB and the output return
loss at 1.7725 GHz – 45.69 dB.
S22 at 1.77 GHz
S22 at 1.7725 GHz
66
Simulation Results - S22
• The output return loss at 2 GHz is – 26.47 dB and the output return
loss at 1.9975 GHz – 26.6 dB.
S22 at 2 GHz
S22 at 1.9975 GHz
67
Simulation Results - S21
• The overall gain of
the LNA is 12 dB
S21 at 1.4025 GHz
68
Simulation Results - Linearity
• The third order input intercept is –3.16 dBm
• -1 dB compression point ( the output level at which the actual gain
departs from the theoretical gain) is –12 dBm
IIP3
-1dB compression point
69
From an earlier slide:
k
• Flicker noise V ( f )  WLC f
ox
– Dominant at low frequency
2
g
Vg
Id
Vi
• Thermal noise Id2 ( f )  4kTg gm
– g: empirical constant
2/3 for long channel
much larger for short channel
– PMOS has less thermal noise
• Input-inferred noise
g
k
Vi ( f )  4kT

g m WLC ox f
2
Not accurate for low voltage short channel devices
70
Modifications
Thermonoise
gm
I ( f )  4kT g g do  4kT g

2
d
g is called excess noise factor
= 2/3 in long channel
= 2 to 3 (or higher!) in short
channel NMOS (less in PMOS)
71
gdo vs gm in short channel
72
gdo vs gm in short channel
73
Fliker noise
• Traps at channel/oxide interface randomly
capture/release carriers
k
V (f)
fWLC ox
2
g
I (f)
2
d
Kf
n

Kf
f
f
– Parameterized by Kf and n
• Provided by fab (note n ≈ 1)
• Currently: Kf of PMOS << Kf of NMOS due to buried channel
– To minimize: want large area (high WL)
74
Induced Gate Noise
• Fluctuating channel potential couples
capacitively into the gate terminal, causing a
noise gate current
2
 

2

ing  4kTdg do 

5


T


– d is gate noise coefficient
• Typically assumed to be 2g
– Correlated to drain noise!
75
real
Input impedance
g m Ldeg
1
Z in ( s)  s( Lg  Ldeg ) 

sC gs
C gs
Set to be real and equal to source resistance:
1
 
( Lg  Ldeg )C gs
2
0
g m Ldeg
C gs
 Rs
76
Output noise current

I d2 ( f )  kTg g do 1  2 c  d   d2 (4Q2  1)

Noise scaling factor:

1
1  2 c  d   d2 (4Q 2  1)
4

gm d
d 
g do 5g
Where for 0.18 process
c=-j0.55, g=3, d=6, gdo=2gm,
d = 0.32
Q
1
2 Rs0C gs

0 ( Lg  Ldeg )
2 Rs
77
Noise factor
 o
F  1  
 T
 g  g do 

 1  2 c  d  (4Q 2  1)  d2

 2Q  g m 


Noise factor scaling coefficient:
g  g do 

2
2


K nf 
1  2 c  d  (4Q  1)  d


2Q  g m 

Compare:
NF  
0
 0
N device  G  Nin
g
2
2

 1
0 4( RsCgs )  1  
G  N in
Rs g m
 T
 g

4
 2Q
78
Noise factor scaling coefficient versus Q
79
Example
• Assume Rs = 50 Ohms, Q = 2, fo = 1.8 GHz, ft = 47.8 GHz
• From
1
Q
2 Rs0C gs
1
1
C gs 

 442 fF
2 Rs0Q 2(50)2 1.8e9(2)
Ldeg 
Rs C gs
gm
Rs
50


 0.17nH
T 2 47.8e9
1
1
 
 Lg  2
 Ldeg  17.5nH
( Lg  Ldeg )Cgs
0 Cgs
2
0
80
Have We Chosen the Correct Bias Point?
IIP3 is also a function of Q
81
If we choose Vgs=1V
• Idens = 175 A/m
• From Cgs = 442 fF, W=274m
• Ibias = IdensW = 48 mA, too large!
• Solution 1: lower Idens => lower power,
lower fT, lower IIP3
• Solution 2: lower W => lower power, lower
Cgs, higher Q, higher NF
82
Lower current density to 100
Need to verify that IIP3 still OK (once we know Q)
83
Lower current density to 100
g m 0.78
gm

 0.68   d 
g do 1.15
g do
d
2
 0.68
 0.43
5
5
g m 0.78mS
T 

 2  42.8 GHz
Cgs
2.9 fF
We now need to re-plot the Noise Factor scaling coefficient
- Also plot over a wider range of Q
 o
F  1  
 T

 g

 g do  1
2
2


1  2 c  d  (4Q  1)  d
 g m  2Q


84
85
Recall
We previously chose Q = 2, let’s now choose Q = 6
- Cuts power dissipation by a factor of 3!
- New value of W is one third the old one
274m
W
 91m
3
86
• Rs = 50 Ohms, Q = 6, fo = 1.8 GHz, ft =
42.8 GHz
• Ibias = IdensW =100A/m*91m=9.1mA
• Power = 9.1 * 1.8 = 16.4 mW
• Noise factor scaling coeff = 10
• Noise factor = 1+ wo/wt * 10
= 1+ 1.8G/42.8G *10 = 1.42
• Noise figure = 10*log(1.42) = 1.52 dB
• Cgs=442/3=147fF
• Ldeg=Rs/wt=0.19nH
• Lg=1/(wo^2Cgs) –Ldeg = 53 nH
87
Other architectures of LNAs
•Add output load to achieve voltage gain
•In practice, use cascode to boost gain
•Added benefit of removing Cgd effect
88
Differential LNA
Value of Ldeg is now much better controlled
Much less sensitivity to noise from other circuits
But:
Twice the power as the single-ended version
Requires differential input at the chip
89
LNA Employing Current Re-Use
•PMOS is biased using a current mirror
•NMOS current adjusted to match the PMOS current
•Note: not clear how the matching network is achieving a 50 Ohm match
Perhaps parasitic bondwire inductance is degenerating the PMOS or
NMOS transistors?
90
Combining inductive
degeneration and current reuse
Current reuse to save power
Larger area due to two degeneration
inductor if implemented on chip
NF: 2dB, Power gain: 17.5dB, IIP3: 6dBm, Id: 8mA from 2.7V power supply
Can have differential version
F. Gatta, E. Sacchi, et al, “A 2-dB Noise Figure 900MHz Differential CMOS LNA,”
IEEE JSSC, Vol. 36, No. 10, Oct. 2001 pp. 1444-1452
91
At DC, M1 and M2 are in cascode
At AC, M1 and M2 are in cascade
S of M2 is AC shorted
Gm of M1 and M2 are multiplied.
Same biasing current in M1 & M2
LIANG-HUI LI AND HUEY-RU CHUANG, MICROWAVE JOURNAL® from the February 2004 issue.
92
•IM3 components in the drain
current of the main transistor has
the required information of its
nonlinearity
•Auxiliary circuit is used to tune the
magnitude and phase of IM3
components
•Addition of main and auxiliary
transistor currents results in
negligible IM3 components at
output
ia  g m1va  g v  g v
2
m2 a
3
m3 a
ib  g v
3
m3 b
i o  ia  ib
Sivakumar Ganesan, Edgar Sánchez-sinencio, And Jose Silva-martinez
IEEE Transactions On Microwave Theory And Techniques, Vol. 54, No. 12, December 2006
93
MOS in weak inversion has speed problem
MOS transistor in weak inversion acts like bipolar
Bipolar available in TSMC 0.18 technology (not a parasitic BJT)
Why not using that bipolar transistor to improve linearity ?
94
Inter-stage Inductor gain boost
Inter-stage inductor with
parasitic capacitance form
impedance match network between
input stage and cascoded stage
boost gain lower noise figure.
Input match condition will be
affected
95
Folded cascode
Low supply voltage
Ld reduces or eliminates
Effect of Cgd1
Good fT
96
Design Procedure for Inductive
Source Degenerated LNA
Noise factor equations:
 o
F  1  
 T

 g

 g do  1


1  2 c  d  (4Q 2  1)  d2
 g m  2Q

 g do  1
2
2


K nf  g 
1  2 c  d  (4Q  1)  d

 g m  2Q



97
Targeted Specifications
•
•
•
•
•
Frequency
Noise Figure
IIP3
Voltage gain
Power
2.4 GHz ISM Band
1.6 dB
-8 dBm
20 dB
< 10mA from 1.8V
98
Step 1: Know your process
• A 0.18um CMOS Process
• Process related
–
–
–
–
tox = 4.1e-9 m
e = 3.9*(8.85e-12) F/m
 = 3.274e-2 m^2/V.s
Vth = 0.52 V
• Noise related
–
–
–
–
 = gm/gdo
d/g ~ 2
g~3
c = -j0.55
99
Step 2: Obtain design guide plots
100
Insights:
• gdo increases all the way with current
density Iden
• gm saturates when Iden larger than
120A/m
– Velocity saturation, mobility degradation ---short channel effects
– Low gm/current efficiency
– High linearity
•  deviates from long channel value (1)
with large Iden
101
Obtain design guide plots
102
Insights:
• fT increases with Vod when Vod is small and
saturates after Vod > 0.3V --- short channel
effects
• Cgs/W increases slowly after Vod > 0.2V
• fT begins to degrade when Vod > 0.8V
– gm saturates
– Cgs increases
• Should keep Vod ~0.2 to 0.4 V
103
Obtain design guide plots
knf vs input Q and current density
3-D plot for visual
inspection
2-D plots for
design reference
104
Design trade-offs
• For fixed Iden, increasing Q will reduce the
size of transistor thus reduce total power --- noise figure will become larger
• For fixed Q, reducing Iden will reduce
power, but will increase noise factor
• For large Iden, there is an optimal Q for
minimum noise factor, but power may be
too high
105
Obtain design guide plots
Linearity plots :IIP3 vs. gate overdrive and transistor size
106
Insights:
• MOS transistor IIP3 only, when embedded into
actual circuit:
– Input Q will degrade IIP3
– Non-linear memory effect will degrade IIP3
– Output non-linearity will degrade IIP3
• IIP3 is a very weak function of device size
• Generally, large overdrive means large IIP3
– But the relationship between IIP3 and gate overdrive
is not monotonic
– There is a local maxima around 0.1V overdrive
107
Step 4: Estimate fT
Small current budget ( < 10mA )
does not allow large gate over drive :
Vod ~ 0.2 V ~ 0.4 V
fT ~ 40 ~ 44 GHz
108
Step 4: Determine Iden, Q and
Calculate Device Size
Gm/W~0.4
Select Iden = 70 A/m, =>Vod~0.23V
109
If Q = 4, IIP3 will have enough margin:
Estimated IIP3:
IIP3(from curve) – 20log(Q) = 8-12 = -4dBm
Specs require: -8 dBm
110
Q=4 and Iden = 70A/m meet the
noise factor requirement
111
Gm=0.4*128 ~ 50 mS
fT = gm/(Cgs*2pi) = 48 GHz
112
Step 6: Simulation Verification
Large deviation
113
114
Comparison between targeted
specs and simulation results
Parameter
Noise Figure
Drain Current
Voltage gain
IIP3
P1dB
S11
Power supply
Target
1.6 dB
< 10mA
20 dB
-8 dBm
1.8 V
Simulated
0.8 dB
8 mA
21 dB
-6.4 dBm
-20dbm
-17 dB
1.8 V
115