Transcript CBM at FAIR

CBM at FAIR
Walter F.J. Müller, GSI
5th BMBF-JINR Workshop, 17-19 January 2005
Outline

Physics



Experiment


17-19 January 2005
physics case
observables
requirements
challenges
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
2
States of strongly interacting matter
baryons
Compression +
hadrons
heating
partons
= quark-gluon plasma
(pion production)
Neutron stars
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
Early universe
3
Phase diagram of strongly interacting matter
Freeze-out points calculated
from measured particle ratios
using the statistical model
baryon density:
B  4 ( mT/2h2c2)3/2 x
[exp((B-m)/T) - exp((-B-m)/T)]
baryons
- antibaryons
Lattice QCD calculations:
Fedor & Katz, Ejiri et al.
dilute: B  0.04 fm-3  0.24 0
dense: B  1.0 fm-3  6.2 0
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
4
Probing matter at high densities
Trajectories calculated by a
3-fluid hydrodynamics model
Toneev & Ivanov
30 AGeV trajectory close
to critical endpoint
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
5
The future Facility for Antiproton an Ion Research (FAIR)
SIS 100 Tm
SIS 300 Tm
U: 35 AGeV
p: 90 GeV
17-19 January 2005
5th BMBF-JINR Workshop, Walter
F.J. Müller, GSI
Compressed Baryonic Matter
6
Phase diagram of strongly interacting matter
CERN-SPS, RHIC, LHC: high temperature, low baryon density
GSI SIS300:
moderate temperature, high baryon density
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
7
States of strongly interacting matter
“Strangeness" of dense matter ?
In-medium properties of hadrons ?
of nuclear
17-19 January 2005 Compressibility
5th BMBF-JINR
Workshop,matter?
Walter
Müller,
GSI densities ?
Deconfinement at F.J.
high
baryon
8
CBM Physics Topics and Observables

In-medium modifications of hadrons
 onset of chiral symmetry restoration at high ρB
 measure: , ,   e+eopen charm (D mesons)

Strangeness in matter
 enhanced strangeness production
 measure: K, , , , 

Indications for deconfinement at high ρB
 anomalous charmonium suppression ?
 measure: J/, D

Critical point
 event-by-event fluctuations

Color superconductivity
 precursor effects ?
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
9
Low-mass dileptons: Pb+Au@40 AGeV
CERES Collaboration
17-19 January 2005
S. Damjanovic and K. Filimonov, nucl-ex/0109017
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
10
Meson production in central Au+Au
W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 745
SIS18
17-19 January 2005
SIS100/
300
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
11
Open Charm detection
D meson production in pN collisions
Some hadronic decay modes
D (c = 317 m):
D+  K0+ (2.90.26%)
D+  K-++ (9  0.6%)
D0 (c = 124.4 m):
D0  K-+ (3.9  0.09%)
D0  K-+ + - (7.6  0.4%)
Measure displaced vertex
with resolution of  30 μm !
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
12
CBM Setup
 Radiation hard Silicon pixel/strip detectors in a magnetic dipole field
 Electron detectors: RICH & TRD & ECAL: pion suppression up to 105
 Hadron identification: RPC, RICH
 Measurement of photons, π0, η, and muons: ECAL
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
13
CBM Technical Status Report
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
14
CBM Collaboration : 42 institutions, 14 countries
Croatia:
RBI, Zagreb
Hungaria:
Russia:
KFKI Budapest
CKBM, St. Petersburg
Eötvös Univ. Budapest IHEP Protvino
Cyprus:
INR Troitzk
Korea:
Nikosia Univ.
ITEP Moscow
Korea Univ. Seoul
KRI, St. Petersburg
Pusan National Univ.
Czech Republic:
Kurchatov Inst., Moscow
Czech Acad. Science, Rez
LHE, JINR Dubna
Norway:
Techn. Univ. Prague
LPP, JINR Dubna
Univ. Bergen
LIT, JINR Dubna
France:
LTP, JINR Dubna
Poland:
IReS Strasbourg
MEPhi, Moskau
Krakow Univ.
Obninsk State Univ.
Warsaw Univ.
Germany:
PNPI Gatchina
Univ. Heidelberg, Phys. Inst. Silesia Univ. Katowice SINP, Moscow State Univ.
Univ. HD, Kirchhoff Inst.
St. Petersburg Polytec. U.
Portugal:
Univ. Frankfurt
Spain:
LIP Coimbra
Univ. Kaiserslautern
Santiago de Compostela
Univ. Mannheim
Univ.
Romania:
Univ. Marburg
Ukraine:
NIPNE Bucharest
Univ. Münster
Shevshenko Univ. , Kiev
FZ Rossendorf
Univ. of Kharkov
GSI Darmstadt
CBM & Дубна
From first page
of CBM
Collaboration List
4 Labs
38 Persons
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
16
Experimental Challenges
Central Au+Au collision at 25 AGeV:
URQMD + GEANT4
160 p
360 41 K+
330 + 360 0
13 K-
 107 Au+Au reactions/sec
(beam intensities up to 109 ions/sec, 1 % target)
 determination of (displaced) vertices with high resolution ( 30 m)
 identification of electrons and hadrons
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
17
Pion misidentification
a)0%
b)0.01%
c)0.1%
d)1%
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
18
Experimental Conditions
Hit rates for 107 minimum bias Au+Au collisions at 25 AGeV:
Rates of > 10 kHz/cm2 in large part of detectors !
 main thrust of our detector design studies
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
19
CBM DAQ Requirements Profile


D and J/Ψ signal drives the rate capability requirements
D signal drives FEE and DAQ/Trigger requirements




Problem similar to B detection, see BTeV, LHCb
Adopted approach:
displaced vertex 'trigger' in first level, like in BTeV
Additional Problem:
DC beam → interactions at random times
→ time stamps with ns precision needed
→ explicit event association needed
Current design for FEE and DAQ/Trigger:


Self-triggered FEE:
All hits shipped with time stamp
Data-push architecture: L1 trigger throughput limited but
not latency limited
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
Substantial
R&D
needed
Quite
different
from the
usual
LHC style
electronics
20
Conventional FEE-DAQ-Trigger Layout
Especially
instrumented
detectors
Detector
L0 Trigger
fbunch
Trigger
Primitives
FEE
Dedicated
connections
Buffer
Limited
capacity
Modest
bandwidth
L2 Trigger
Archive
17-19 January 2005
Standard
hardware
L1 Accept
DAQ
Cave
Limited
L1 trigger
latency
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
Shack
L1 Trigger
Specialized
trigger
hardware
21
The way out: use Data Push Architecture
Detector
Self-triggered front-end
Autonomous hit detection
fclock
FEE
No dedicated trigger connectivity
All detectors can contribute to L1
Cave
Large buffer depth available
System is throughput-limited
and not latency-limited
High
bandwidth
DAQ
L1 Select
FPGA and
CPU mix
L2 Select
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
Shack
Modular design:
Few multi-purpose rather
many special-purpose
modules
22
Toward Multi-Purpose FEE Chain
PreAmp





Si Strip
Pad
GEM's
PMT
APD's
pre
Filter
AntiAliasing
Filter
ADC
Sample rate:
10-100 MHz
Dyn. range:
8...>12 bit
digital
Filter
'Shaping'
1/t Tail
cancellation
Baseline
restorer
Hit
Finder
Hit
parameter
estimators:
Amplitude
Time
Backend
& Driver
Clustering
Buffering
Link protocol
All potentially in one mixed-signal chip
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
23
CBM DAQ and Online Event Selection
Data flow:
~ 1 TB/sec
1st level
selection:
~ 1 Pops
Data flow:
~ 1 GB/sec
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
24
CBM R&D working packages
Design & construction
of detectors
Feasibility studies
Simulations
Framework
GSI
Tracking
KIP Univ. Heidelberg
Univ. Mannheim
JINR-LHE Dubna
JINR-LIT Dubna
Ring finder
,ω,  e+eUniv. Krakow
JINR-LHE Dubna
J/ψ  e+eINR Moscow
GSI
J/ψ 
μ+μ-
JINR-LIT, Dubna
PNPi St. Petersburg
SPU St. Petersburg
π, K, p ID
D  Kπ(π)
Silicon Pixel
IReS Strasbourg
Frankfurt Univ.,
GSI Darmstadt,
RBI Zagreb,
Univ. Krakow
Silicon Strip
Moscow State Univ
CKBM St. Petersburg
KRI St. Petersburg
Univ. Obninsk
RPC-TOF
MWPC TRD
JINR-LHE, Dubna
GSI Darmstadt,
Univ. Münster
NIPNE Bucharest
Straw TRD
JINR-LPP, Dubna
FZ Rossendorf
FZ Jülich
Tech. Univ. Warsaw
ECAL
KIP Univ. Heidelberg
Univ. Mannheim
GSI Darmstadt
JINR-LIT, Dubna
Univ. Bergen
KFKI Budapest
Silesia Univ. Katowice
Warsaw Univ.
ITEP Moscow
GSI Darmstadt
Univ. Krakow
LIP Coimbra,
GSI Darmstadt,
Univ. Santiago
Czech Acad. Sci., Rez
Univ. Heidelberg,
Techn. Univ. Prague
GSI Darmstadt,
Warsaw Univ.
IHEP Protvino
NIPNE Bucharest
GSI Darmstadt
INR Moscow
FZ Rossendorf
PNPi St. Petersburg
IHEP Protvino
SPU St. Petersburg
ITEP Moscow
JINR-LHE, Dubna
17-19 January 2005
5th BMBF-JINR
RBI ZagrebWorkshop, Walter
GSI Darmstadt
Univ.
Marburg
F.J.
Müller, GSI
Heidelberg Univ,
Warsaw Univ.
Kiev Univ.
NIPNE Bucharest
INR Moscow
FEE,
DAQ,
Online Event
Selection,
Computing
RICH
Theory:
JINR-LTP, Dubna
Λ, Ξ,Ω
Magnet
25
CBM – Event Reconstruction & Analysis
LHE
LIT
LIT
LHE
LIT
LIT
LHE
LIT
LIT
LIT
• Track finding
•Hough transform
•Cellular automaton
•Conformal mapping
•3D track following
• Track fitting
•Kalman filter
•Kalman filter (projections)
•Parabolic approximation
•Polynomial approximation
•Orthogonal polynomial set
• Primary vertex fitting
•Minimization of impact parameters
•Geometrical Kalman filter
• Secondary vertex fitting
•Geometrical Kalman filter
•Mass and topological constrained fit
• RICH ring finding
•Track extrapolation
•Hough transform
•Elastic net
•Robust fitter
17-19 January 2005
LHE
LHE
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
• Analysis
•.......
•Λ-Analysis
•low-mass dileptons
•.......
26
CBM – Magnet Design (LHE)
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
27
CBM – Fast Detectors (LHE)
Joint test beam
at GSI in July '04
2 chambers from Dubna
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
28
CBM – Straw based TRD (LPP)
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
29
Experimental program of CBM:
Observables:
Penetrating probes: , , , J/ (vector mesons)
Strangeness: K, , , , ,
Open charm: Do, D
Hadrons ( p, π), exotica
Detector requirements
Large geometrical acceptance
good hadron and electron identification
excellent vertex resolution
high rate capability of detectors, FEE and DAQ
Systematic investigations:
A+A collisions
p+A collisions
p+p collisions
Beam energies
from 8 to 45 (35) AGeV, Z/A=0.5 (0.4)
from 8 to 90 GeV   e+e- ?
from 8 to 90 GeV
up to 8 AGeV: HADES
Large integrated luminosity:
High beam intensity and duty cycle,
17-19 Available
January 2005
5th BMBF-JINR
Walter F.J. Müller, GSI
for several
monthWorkshop,
per year
30
Stay tuned for
Part II
by
Prof. A. Malakhov
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
31
17-19 January 2005
5th BMBF-JINR Workshop, Walter F.J. Müller, GSI
32