Transcript Folie 1
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Peter Senger Outline: FAIR: future center for nuclear and hadron physics in Europe Compressed Baryonic Matter: physics and observables Technical challenges, time lines ... The FAIR layout SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Key features: Generation of intense, high-quality secondary beams of rare isotopes and antiprotons. Two rings: simultaneous beams. Cooled antiproton beams up to 15 GeV: Charmonium Spectroscopy, Search for glueballs and hybrids, Hypernuclear physics, ... Ion and Laser Induced Plasmas: High Energy Density in Matter Compressed Baryonic Matter Structure of Nuclei far from Stability States of strongly interacting matter baryons Compression + hadrons heating partons = quark-gluon plasma (pion production) Neutron stars Early universe Exploring the phase diagram of strongly interacting matter CERN-SPS, RHIC, LHC: high temperature, low baryon density GSI SIS300: moderate temperature, high baryon density Mapping QCD end phase diagram Thethe critical point with heavy-ion collisions Ejiri et al. Fodor-Katz Cross over Mesondominated matter CBM physics: exploring the high density region of the QCD phase diagram. Dense baryondominated matter Search for • restoration of chiral symmetry • partonic matter at large μB • critical endpoint Fundamental questions: Equation-of-state at high densities: supernova dynamics, stability of neutron stars In-medium hadron properties: chiral symmetry restoration, origin of hadron masses? deconfinement B 3-80 , T 130 MeV Diagnostic probes CBM physics topics and observables 1. In-medium modifications of hadrons onset of chiral symmetry restoration at high B measure: , , e+eopen charm (D mesons) 2. Strangeness in matter (strange matter?) enhanced strangeness production ? measure: K, , , , 3. Indications for deconfinement at high B anomalous charmonium suppression ? measure: J/, D softening of EOS measure flow excitation function 4. Critical point event-by-event fluctuations 5. Color superconductivity precursor effects ? Looking into the fireball … n p p ++ K e+ e… using penetrating probes: short-lived vector mesons decaying into electron-positron pairs Invariant mass of electron-positron pairs from Pb+Au at 40 AGeV CERES Collaboration S. Damjanovic and K. Filimonov, nucl-ex/0109017 ≈185 pairs! Experimental situation : Strangeness production Experimental situation : Strangeness enhancement ? in central Au+Au and Pb+Pb collisions New results from NA49 (CERN Courier Oct. 2003) SIS 100 300 Statistical hadron gas model P. Braun-Munzinger et al. Nucl. Phys. A 697 (2002) 902 SIS 100 300 J/ experiments: a count rate estimate 10 50 120 210 Elab [GeV] central collisions 25 AGeV Au+Au J/ multiplicity beam intensity interactions central collisions J/ rate 6% J/e+e- (+-) spill fraction acceptance J/ measured 1.5·10-5 1·109/s 1·107/s (1%) 1·106/s 15/s 0.9/s 0.8 0.25 0.17/s 1·105/week 158 AGeV Pb+Pb 1·10-3 2·107/s 2·106/s (10%) 2·105/s 200/s 12/s 0.25 0.1 0.3/s 1.8·105/week Charmed mesons D meson production in pN collisions Some hadronic decay modes D (c = 317 m): D+ K0+ (2.90.26%) D+ K-++ (9 0.6%) D0 (c = 124.4 m): D0 K-+ (3.9 0.09%) D0 K-+ + - (7.6 0.4%) Measure displaced vertex with resolution of 30 μm ! Experimental challenges Central Au+Au collision at 25 AGeV: URQMD + GEANT4 160 p 400 400 + 44 K+ 13 K- 107 Au+Au reactions/sec (beam intensities up to 109 ions/sec, 1 % interaction target) determination of (displaced) vertices with high resolution ( 30 m) identification of electrons and hadrons The CBM Experiment Radiation hard Silicon pixel/strip detectors in a magnetic dipole field Electron detectors: RICH & TRD & ECAL: pion suppression up to 105 Hadron identification: RPC, RICH Measurement of photons, π0, η, and muons: electromagn. calorimeter (ECAL) High speed data acquisition and trigger system CBM Collaboration : 39 institutions, 14 countries Croatia: RBI, Zagreb Hungaria: Russia: KFKI Budapest CKBM, St. Petersburg Eötvös Univ. Budapest IHEP Protvino Cyprus: INR Troitzk Nikosia Univ. Korea: ITEP Moscow Korea Univ. Seoul KRI, St. Petersburg Czech Republic: Pusan National Univ. Kurchatov Inst., Moscow Czech Acad. Science, Rez LHE, JINR Dubna Techn. Univ. Prague Norway: LPP, JINR Dubna Univ. Bergen LIT, JINR Dubna France: Obninsk State Univ. IReS Strasbourg Poland: PNPI Gatchina Krakow Univ. SINP, Moscow State Univ. Germany: Warsaw Univ. St. Petersburg Polytec. U. Univ. Heidelberg, Phys. Inst. Silesia Univ. Katowice Univ. HD, Kirchhoff Inst. Spain: Univ. Frankfurt Portugal: Santiago de Compostela Univ. Univ. Mannheim LIP Coimbra Univ. Marburg Ukraine: Romania: Univ. Münster Shevshenko Univ. , Kiev NIPNE Bucharest FZ Rossendorf Univ. of Kharkov GSI Darmstadt FAIR milestones FAIR cost (M€) Total: 675 Buildings: 225.5 SIS100: SIS200: Coll. Ring: NESR: HESR: e-ring: Beamlines: Cryo, etc: 70.1 39.6 45.0 40.0 45.0 15.0 21.0 44.1 SFRS: CBM: AP: Plasma phys.: p-linac: PANDA: pbar targ.: 40.7 27.0 8.7 8.0 10.0 28.4 6.9 Oct. 2001 : Submission of the Conceptual Design Report Nov. 2002: Positive evaluation report of the German science council Feb. 2003: Project approved by the German federal government (170 M€ foreign contributions requested) Jan. 2004: Letters of intent submitted Feb. 2004: 1. Meeting of Internat. Steering Committee (12 nations) June 2004: Evaluation of the LOI,s by PACs Jan 2005: Submission of Technical Reports Concept for staged Construction of FAIR 2005 General Planning I TDM# 2006 2007 2008 SIS18 Upgrade 70 MW Connection Proton-Linac 2009 2010 Civil Construction 1 2013 2014 SIS100/200 Tunnel, SIS Injection+Extraction+Transfer Transfer Buildings/Line Super-FRS, Auxiliary Bldgs., Transfer Tunnel to SIS18, Building APT, Super-FRS, CR-Complex RIB High+Low Energy Branch, Civil Construction 2 III 2012 2,7x1011 /s 238U28+ (200 MeV/u) 5x1012 protons per puls SIS100 Transfer Line SIS18-SIS100 High Energy Beam Lines II 2011 RIB Prod.-Target, Super-FRS RIB High+Low Energy Branch Antiproton Prod.-Target CR-Complex 1x1011/s 238U28+ (0.4-2.7GeV/u) ->RIB (50% duty cycle) 2.5x1013 p (1-30 GeV) 3-30 GeV pbar->fixed target 10.7 GeV/u 238U -> HADES* Civil Construction 3 CBM-Cave, Pbar-Cave, Reinjection SIS100 HESR & 4 MV e- –Cooling NESR IV Civil Construction 4 SIS200* 8 MV e- –Cooling e-A Collider V #Construction Tunnel Drilling Machine Civil Construction HESR ( ground level), NESR, AP-cave, e-A Collider, PP-cave 1x1012/s 238U28+ 100% duty cycle pbar cooled p (1-90 GeV) 35 GeV/u 238U92+ NESR physics plasma physics Civil Construction Production and Installation Experiment Potential *SIS200 installation during SIS100 shut down Design of a Silicon Pixel detector Silicon Tracking System: 7 planar layers of pixels/strips. Vertex tracking by two first pixel layers at 5 cm and 10 cm downstream target Design goals: • • • • low materal budget: d < 200 μm single hit resolution < 20 μm radiation hard (dose 1015 neq/cm2) fast read out Roadmap: R&D on Monolithic Active Pixel Sensors (MAPS) • pitch 20 μm • thickness below 100 μm • single hit resolution : 3 μm • Problem: radiation hardness and readout speed Fallback solution: Hybrid detectors MIMOSA IV IReS / LEPSI Strasbourg Experimental conditions Hit rates for 107 minimum bias Au+Au collisions at 25 AGeV: Rates of > 10 kHz/cm2 in large part of detectors ! main thrust of our detector design studies Design of a high rate RPC Design goals: • • • • • Time resolution ≤ 80 ps High rate capability up to 25 kHz/cm2 Efficiency > 95 % Large area 150 m2 Long term stability Prototype test: detector with plastic electrodes (resistivity 109 Ohm cm.) P. Fonte, Coimbra “Trajectories” (3 fluid hydro) Ivanov & Toneev Hadron gas EOS Calculations reproduce freeze-out conditions 30 AGeV trajectory close to the critical endpoint Mapping the QCD phase diagram with heavy-ion collisions P. Braun-Munzinger C. R. Allton et al, hep-lat 0305007 SIS300 B 6 0 B 0.3 0 baryon density: B 4 ( mT/2)3/2 x [exp((B-m)/T) - exp((-B-m)/T)] Lattice QCD : - antibaryons maximal baryon number density fluctuations at T baryons for = T ( 500 MeV) C q C B Design of a fast TRD Design goals: e/π discrimination of > 100 (p > 1 GeV/c) • High rate capability up to 150 kHz/cm2 • Position resolution of about 200 μm • Large area ( 500 m2, 9 layers) Roadmap: Outer part: ALICE TRD Inner part: • GEM/MICROMEGAS readout chambers • Straw tube TRT (ATLAS) • Fast read-out electronics CBM R&D working packages Feasibility, Simulations GEANT4: GSI ,ω, e+eUniv. Krakow JINR-LHE Dubna D Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague J/ψ e+e- Design & construction of detectors Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Univ. Krakow Silicon Strip SINP Moscow State U. CKBM St. Petersburg KRI St. Petersburg INR Moscow Hadron ID Heidelberg Univ, Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna RPC-TOF LIP Coimbra, Univ. Santiago de Com., Univ. Heidelberg, GSI Darmstadt, Warsaw Univ. NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow Fast TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster INFN Frascati Straw tubes JINR-LPP, Dubna FZ Rossendorf FZ Jülich Tech. Univ. Warsaw ECAL ITEP Moscow GSI Darmstadt Univ. Krakow RICH IHEP Protvino GSI Darmstadt Magnet JINR-LHE, Dubna GSI Darmstadt Data Acquis., Analysis Trigger, DAQ KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt JINR-LIT, Dubna Univ. Bergen KFKI Budapest Silesia Univ. Katowice Univ. Warsaw Analysis GSI Darmstadt, Heidelberg Univ, Mapping the QCD phase diagram with heavy-ion collisions P. Braun-Munzinger SIS300 B 6 0 B 0.3 0 Net baryon density: B 4 ( mT/2)3/2 x [exp((B-m)/T) - exp((-B-m)/T)] baryons - antibaryons