Transcript Folie 1

The Compressed Baryonic Matter Experiment
at the Future Facility for Antiproton and Ion Research (FAIR)
Peter Senger
Outline:
 FAIR: future center for nuclear and hadron physics in Europe
 Compressed Baryonic Matter: physics and observables
 Technical challenges, time lines ...
The FAIR layout
SIS 100 Tm
SIS 300 Tm
U: 35 AGeV
p: 90 GeV
Key features:
Generation of intense,
high-quality secondary beams
of rare isotopes and antiprotons.
Two rings: simultaneous beams.
Cooled antiproton beams up to 15 GeV:
Charmonium Spectroscopy,
Search for glueballs and hybrids,
Hypernuclear physics, ...
Ion and Laser Induced Plasmas:
High Energy Density in Matter
Compressed Baryonic Matter
Structure of Nuclei
far from Stability
States of strongly interacting matter
baryons
Compression +
hadrons
heating
partons
= quark-gluon plasma
(pion production)
Neutron stars
Early universe
Exploring the phase diagram of strongly interacting matter
CERN-SPS, RHIC, LHC: high temperature, low baryon density
GSI SIS300:
moderate temperature, high baryon density
Mapping
QCD end
phase
diagram
Thethe
critical
point
with heavy-ion collisions
Ejiri et al.
Fodor-Katz
Cross over
Mesondominated
matter
CBM physics:
exploring the high density region
of the QCD phase diagram.
Dense baryondominated matter
Search for
• restoration of chiral symmetry
• partonic matter at large μB
• critical endpoint
Fundamental questions:
 Equation-of-state at high densities:
supernova dynamics,
stability of neutron stars
 In-medium hadron properties:
chiral symmetry restoration,
origin of hadron masses?
 deconfinement
B  3-80 , T  130 MeV
Diagnostic probes
CBM physics topics and observables
1. In-medium modifications of hadrons
 onset of chiral symmetry restoration at high B
measure: , ,   e+eopen charm (D mesons)
2. Strangeness in matter (strange matter?)
 enhanced strangeness production ?
measure: K, , , , 
3. Indications for deconfinement at high B
 anomalous charmonium suppression ?
measure: J/, D
 softening of EOS
measure flow excitation function
4. Critical point
 event-by-event fluctuations
5. Color superconductivity
 precursor effects ?
Looking into the fireball …
n

p
p

++


K
e+
e… using penetrating probes:
short-lived vector mesons decaying into
electron-positron pairs
Invariant mass of electron-positron pairs from Pb+Au at 40 AGeV
CERES Collaboration
S. Damjanovic and K. Filimonov, nucl-ex/0109017
≈185 pairs!
Experimental situation : Strangeness production
Experimental
situation
: Strangeness
enhancement ?
in central
Au+Au
and Pb+Pb collisions
New results from NA49 (CERN Courier Oct. 2003)
SIS
100
300
Statistical hadron gas model
P. Braun-Munzinger et al.
Nucl. Phys. A 697 (2002) 902
SIS
100
300
J/ experiments: a count rate estimate
10
50 120 210
Elab [GeV]
central collisions 25 AGeV Au+Au
J/ multiplicity
beam intensity
interactions
central collisions
J/ rate
6% J/e+e- (+-)
spill fraction
acceptance
J/ measured
1.5·10-5
1·109/s
1·107/s (1%)
1·106/s
15/s
0.9/s
0.8
0.25
0.17/s
 1·105/week
158 AGeV Pb+Pb
1·10-3
2·107/s
2·106/s (10%)
2·105/s
200/s
12/s
0.25
 0.1
 0.3/s
 1.8·105/week
Charmed mesons
D meson production in pN collisions
Some hadronic decay modes
D (c = 317 m):
D+  K0+ (2.90.26%)
D+  K-++ (9  0.6%)
D0 (c = 124.4 m):
D0  K-+ (3.9  0.09%)
D0  K-+ + - (7.6  0.4%)
Measure displaced vertex
with resolution of  30 μm !
Experimental challenges
Central Au+Au collision at 25 AGeV:
URQMD + GEANT4
160 p
400 400 +
44 K+
13 K-
 107 Au+Au reactions/sec
(beam intensities up to 109 ions/sec, 1 % interaction target)
 determination of (displaced) vertices with high resolution ( 30 m)
 identification of electrons and hadrons
The CBM Experiment
 Radiation hard Silicon pixel/strip detectors in a magnetic dipole field
 Electron detectors: RICH & TRD & ECAL: pion suppression up to 105
 Hadron identification: RPC, RICH
 Measurement of photons, π0, η, and muons: electromagn. calorimeter (ECAL)
 High speed data acquisition and trigger system
CBM Collaboration : 39 institutions, 14 countries
Croatia:
RBI, Zagreb
Hungaria:
Russia:
KFKI Budapest
CKBM, St. Petersburg
Eötvös Univ. Budapest IHEP Protvino
Cyprus:
INR Troitzk
Nikosia Univ.
Korea:
ITEP Moscow
Korea Univ. Seoul
KRI, St. Petersburg
Czech Republic:
Pusan National Univ.
Kurchatov Inst., Moscow
Czech Acad. Science, Rez
LHE, JINR Dubna
Techn. Univ. Prague
Norway:
LPP, JINR Dubna
Univ. Bergen
LIT, JINR Dubna
France:
Obninsk State Univ.
IReS Strasbourg
Poland:
PNPI Gatchina
Krakow Univ.
SINP, Moscow State Univ.
Germany:
Warsaw Univ.
St. Petersburg Polytec. U.
Univ. Heidelberg, Phys. Inst. Silesia Univ. Katowice
Univ. HD, Kirchhoff Inst.
Spain:
Univ. Frankfurt
Portugal:
Santiago de Compostela Univ.
Univ. Mannheim
LIP Coimbra
Univ. Marburg
Ukraine:
Romania:
Univ. Münster
Shevshenko Univ. , Kiev
NIPNE Bucharest
FZ Rossendorf
Univ. of Kharkov
GSI Darmstadt
FAIR milestones
FAIR cost (M€)
Total:
675
Buildings:
225.5
SIS100:
SIS200:
Coll. Ring:
NESR:
HESR:
e-ring:
Beamlines:
Cryo, etc:
70.1
39.6
45.0
40.0
45.0
15.0
21.0
44.1
SFRS:
CBM:
AP:
Plasma phys.:
p-linac:
PANDA:
pbar targ.:
40.7
27.0
8.7
8.0
10.0
28.4
6.9
Oct. 2001 :
Submission of the
Conceptual Design Report
Nov. 2002:
Positive evaluation report of
the German science council
Feb. 2003:
Project approved by the
German federal government
(170 M€ foreign contributions
requested)
Jan. 2004:
Letters of intent submitted
Feb. 2004:
1. Meeting of Internat.
Steering Committee (12 nations)
June 2004:
Evaluation of the LOI,s by PACs
Jan 2005:
Submission of Technical Reports
Concept for staged Construction of FAIR
2005
General Planning
I
TDM#
2006
2007
2008
SIS18 Upgrade
70 MW Connection
Proton-Linac
2009
2010
Civil Construction 1
2013
2014
SIS100/200 Tunnel, SIS Injection+Extraction+Transfer
Transfer Buildings/Line Super-FRS,
Auxiliary Bldgs., Transfer Tunnel to SIS18,
Building APT, Super-FRS, CR-Complex
RIB High+Low Energy Branch,
Civil Construction 2
III
2012
2,7x1011 /s 238U28+ (200 MeV/u)
5x1012 protons per puls
SIS100
Transfer Line SIS18-SIS100
High Energy Beam Lines
II
2011
RIB Prod.-Target, Super-FRS
RIB High+Low Energy Branch
Antiproton Prod.-Target
CR-Complex
1x1011/s 238U28+ (0.4-2.7GeV/u)
->RIB (50% duty cycle)
2.5x1013 p (1-30 GeV)
3-30 GeV pbar->fixed target
10.7 GeV/u 238U -> HADES*
Civil Construction 3
CBM-Cave, Pbar-Cave, Reinjection SIS100
HESR & 4 MV e- –Cooling
NESR
IV
Civil Construction 4
SIS200*
8 MV e- –Cooling
e-A Collider
V
#Construction
Tunnel Drilling Machine
Civil Construction
HESR ( ground level),
NESR, AP-cave,
e-A Collider, PP-cave
1x1012/s 238U28+
100% duty cycle
pbar cooled
p (1-90 GeV)
35 GeV/u 238U92+
NESR physics
plasma physics
Civil Construction
Production and Installation
Experiment Potential
*SIS200 installation during SIS100 shut down
Design of a Silicon Pixel detector
Silicon Tracking System: 7 planar layers of pixels/strips.
Vertex tracking by two first pixel layers
at 5 cm and 10 cm downstream target
Design goals:
•
•
•
•
low materal budget: d < 200 μm
single hit resolution < 20 μm
radiation hard (dose 1015 neq/cm2)
fast read out
Roadmap:
R&D on Monolithic Active Pixel Sensors (MAPS)
• pitch 20 μm
• thickness below 100 μm
• single hit resolution :  3 μm
• Problem: radiation hardness and readout speed
Fallback solution: Hybrid detectors
MIMOSA IV
IReS / LEPSI Strasbourg
Experimental conditions
Hit rates for 107 minimum bias Au+Au collisions at 25 AGeV:
Rates of > 10 kHz/cm2 in large part of detectors !
 main thrust of our detector design studies
Design of a high rate RPC
Design goals:
•
•
•
•
•
Time resolution ≤ 80 ps
High rate capability up to 25 kHz/cm2
Efficiency > 95 %
Large area  150 m2
Long term stability
Prototype test:
detector with
plastic electrodes
(resistivity 109 Ohm cm.)
P. Fonte, Coimbra
“Trajectories” (3 fluid hydro)
Ivanov & Toneev
Hadron gas EOS
Calculations reproduce
freeze-out conditions
30 AGeV trajectory
close to the critical
endpoint
Mapping the QCD phase diagram
with heavy-ion collisions
P. Braun-Munzinger
C. R. Allton et al, hep-lat 0305007
SIS300
B  6 0
B  0.3 0
baryon density:
B  4 ( mT/2)3/2 x
[exp((B-m)/T) - exp((-B-m)/T)]
Lattice QCD :
- antibaryons
maximal baryon number density fluctuations at T baryons
for  = T (
 500 MeV)
C
q
C
B
Design of a fast TRD
Design goals:
e/π discrimination of > 100 (p > 1 GeV/c)
• High rate capability up to 150 kHz/cm2
• Position resolution of about 200 μm
• Large area ( 500 m2, 9 layers)
Roadmap:
Outer part: ALICE TRD
Inner part:
• GEM/MICROMEGAS readout chambers
• Straw tube TRT (ATLAS)
• Fast read-out electronics
CBM R&D working packages
Feasibility,
Simulations
GEANT4:
GSI
,ω,  e+eUniv. Krakow
JINR-LHE Dubna
D  Kπ(π)
GSI Darmstadt,
Czech Acad. Sci., Rez
Techn. Univ. Prague
J/ψ  e+e-
Design & construction
of detectors
Silicon Pixel
IReS Strasbourg
Frankfurt Univ.,
GSI Darmstadt,
RBI Zagreb,
Univ. Krakow
Silicon Strip
SINP Moscow State U.
CKBM St. Petersburg
KRI St. Petersburg
INR Moscow
Hadron ID
Heidelberg Univ,
Warsaw Univ.
Kiev Univ.
NIPNE Bucharest
INR Moscow
Tracking
KIP Univ. Heidelberg
Univ. Mannheim
JINR-LHE Dubna
RPC-TOF
LIP Coimbra,
Univ. Santiago de Com.,
Univ. Heidelberg,
GSI Darmstadt,
Warsaw Univ.
NIPNE Bucharest
INR Moscow
FZ Rossendorf
IHEP Protvino
ITEP Moscow
Fast TRD
JINR-LHE, Dubna
GSI Darmstadt,
Univ. Münster
INFN Frascati
Straw tubes
JINR-LPP, Dubna
FZ Rossendorf
FZ Jülich
Tech. Univ. Warsaw
ECAL
ITEP Moscow
GSI Darmstadt
Univ. Krakow
RICH
IHEP Protvino
GSI Darmstadt
Magnet
JINR-LHE, Dubna
GSI Darmstadt
Data Acquis.,
Analysis
Trigger,
DAQ
KIP Univ. Heidelberg
Univ. Mannheim
GSI Darmstadt
JINR-LIT, Dubna
Univ. Bergen
KFKI Budapest
Silesia Univ. Katowice
Univ. Warsaw
Analysis
GSI Darmstadt,
Heidelberg Univ,
Mapping the QCD phase diagram
with heavy-ion collisions
P. Braun-Munzinger
SIS300
B  6 0
B  0.3 0
Net baryon density:
B  4 ( mT/2)3/2 x
[exp((B-m)/T) - exp((-B-m)/T)]
baryons
- antibaryons