Kein Folientitel

Download Report

Transcript Kein Folientitel

INGAS INtegrated GAS Powertrain
INGAS Subproject SPA2
Meeting – Regensburg
Subproject A2
Status (month 31-36)
Mirko BARATTA – Politecnico di Torino
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
1
INGAS INtegrated GAS Powertrain
INGAS Subproject SPA2
• WP A2.2 – Injection system development
•
Main objectives and Status summary:
- Setup of a model of the real-geometry injector with moving needle, in order to
investigate the injector non-linearity for short injection duration.
- Simulations run with lift profiles measured by Siemens
prail=20 bar, ti=500-1000-1500-2000 s
=> DONE
prail=14-16-18 bar, ti=500-1000-1500-2000 s
=> READY TO BE RUN
The most significant tests should be selected (e.g. prail-sweep @ ti=1000 s).
-> Should we consider this work as pertaining to Task A2.2.2 (“Development
of a new injector concept and optimized nozzle layout”) or Task A2.2.4
(“Analysis and improvement of the over all injection system”)? Based on
DoW, PT has no MM in Task A2.2.4.
-> Should PT give a contribution to DA2.7?
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
2
INGAS INtegrated GAS Powertrain
INGAS Subproject SPA2
• WP A2.4 - Combustion-system development
• Main objectives and Status summary:
– New model validation based on PLIF signal processing within Matlab
environment
» Model validation done also @1500 rpm, Full Load
– Completion of the mixture formation study
» Mixture formation @ full load (MCE - 1500 rpm, SCE – 1500 rpm, MCE –
5000 rpm – COMPLETED
» Simulations with different cone angle – TO BE DISCUSSED.
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
3
INGAS INtegrated GAS Powertrain
Task A2.2.2 – Development of a new injector concept and optimized
nozzle layout
Simulation of the real injector layout (3-holes configuration)
Transient conditions (variable needle lift – input from Siemens)
Boundary condition:
prail, Trail
Gas path
Downstream
environment
pchamber
Tchamber
Closed passage
INGAS Meeting, Regensburg, 13 October 2011
Closed boundary
Mirko BARATTA
4
INGAS INtegrated GAS Powertrain
Task A2.2.2 – Development of a new injector concept and optimized
nozzle layout
Simulation of the real injector layout (3-holes configuration)
Transient conditions (variable needle lift – input from Siemens)
0.009
Lift
Mass flow rate 225
0.009
250
Lift
Mass flow rate 225
0.008
200
0.008
200
0.007
175
0.007
175
0.006
150
0.006
150
0.005
125
0.005
125
0.004
100
0.004
100
0.003
75
0.003
75
0.002
50
0.002
50
0.001
25
0.001
25
0
0
0.2
0.4
0.6
0.8
1
1.2
time [ms]
INGAS Meeting, Regensburg, 13 October 2011
1.4
0
1.6
Mass flow rate [kg/s]
0.01
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
0
3
time [ms]
Mirko BARATTA
5
Lift [um]
Ti=2000s
250
Lift [um]
Mass flow rate [kg/s]
Ti=1000s
0.01
INGAS INtegrated GAS Powertrain
Task A2.2.2 – Development of a new injector concept and optimized
nozzle layout
Simulation of the real injector layout (3-holes configuration)
Transient conditions (variable needle lift – input from Siemens)
Ti=1000s
Ti=2000s
0.01
0.01
inlet
section 1
section 2
0.009
0.008
Mass flow rate [kg/s]
0.008
Mass flow rate [kg/s]
inlet
section 1
section 2
0.009
0.007
0.006
0.005
0.004
0.003
0.007
0.006
0.005
0.004
0.003
0.002
0.002
0.001
0.001
0
0
0
0.2
0.4
0.6
0.8
1
1.2
time [ms]
INGAS Meeting, Regensburg, 13 October 2011
1.4
1.6
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
time [ms]
Mirko BARATTA
6
INGAS INtegrated GAS Powertrain
Task A2.2.2 – Development of a new injector concept and optimized
nozzle layout
Simulation of the real injector layout (3-holes configuration)
Transient conditions (variable needle lift – input from Siemens)
21
20
20
19
19
Pressione totale [bar]
Pressione totale [bar]
Ti=1000s
21
18
17
16
15
14
section 1
section 2
13
Ti=2000s
18
17
16
15
14
13
section 1
section 2
12
12
11
11
0
0.2
0.4
0.6
0.8
1
1.2
time [ms]
INGAS Meeting, Regensburg, 13 October 2011
1.4
1.6
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
time [ms]
Mirko BARATTA
7
INGAS INtegrated GAS Powertrain
Task A2.2.2 – Development of a new injector concept and optimized
nozzle layout
Simulation of the real injector layout (3-holes configuration)
Transient conditions (variable needle lift – input from Siemens)
Injacted Mass [mg]
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Lift Integral [m∙s]
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
8
INGAS INtegrated GAS Powertrain
Task A2.2.2 – Development of a new injector concept and optimized
nozzle layout
Simulation of the real injector layout (3-holes configuration)
Model validation ???
•
Solution #1: using data from MCE (AVL presentation in Oulu)
14.00
Injacted Mass [mg]
Injection time vs. fuelmass flow
(Load-sweep at 2000rpm)
8
Injection with needle lift 150
7
Injection with needle lift 200
Injection time [ms]
6
5
4
3
2
1
simulation
12.00
exp
10.00
8.00
6.00
4.00
extrapolated points
2.00
0.00
0
0
0
1
2
3
4
5
6
Fuel mass flow [kg/h]
INGAS Meeting, Regensburg, 13 October 2011
7
8
9
0.05
0.1
0.15
0.2
0.25
0.3
0.35
Lift Integral [m∙s]
Mirko BARATTA
9
0.4
INGAS INtegrated GAS Powertrain
Task A2.2.2 – Development of a new injector concept and optimized
nozzle layout
Simulation of the real injector layout (3-holes configuration)
Model validation ???
•
Solution #2: using data from the old PT publication (ASME ICEF2010-35104)
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
10
INGAS INtegrated GAS Powertrain
Task A2.4.2 – Analysis of mixture formation
Qualitative model validation based on statistical pictures (from the Oulu meeting)
Experimental
Simulated
(statistical)
4
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
INGAS INtegrated GAS Powertrain
Task A2.4.2 – Analysis of mixture formation
Quantitative model validation
1500 rpm – RAFR = 1.0 – Homogeneous operation – Full Load
 = 165° CA BTDC (15° CA ASI)

7
6.5
7
400
6
5.5
350
5
6
300
4.5
4
250
5
4
3.5
200
3
2.5
150
2
100
3
1.5
1
50
0.5
2
50
100
150
200
250
300
350
400
450
0
1
0
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
12
INGAS INtegrated GAS Powertrain
Task A2.4.2 – Analysis of mixture formation
Quantitative model validation
1500 rpm – RAFR = 1.0 – Homogeneous operation – Full Load
 = 150° CA BTDC (30° CA ASI)

7
6.5
400
7
6
5.5
350
5
6
300
4.5
4
250
5
4
3.5
200
3
2.5
150
2
100
3
1.5
1
50
2
0.5
50
100
150
200
250
300
350
400
450
0
1
0
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
13
INGAS INtegrated GAS Powertrain
Task A2.4.2 – Analysis of mixture formation
Quantitative model validation
1500 rpm – RAFR = 1.0 – Homogeneous operation – Full Load
 = 50° CA BTDC
7
6.5
400
6
5.5
350
5
300
4.5
4
250
3.5
200
3
2.5
150
2
100
1.5
1
50
0.5
50
INGAS Meeting, Regensburg, 13 October 2011
100
150
200
250
300
350
400
450
0
Mirko BARATTA
14
INGAS INtegrated GAS Powertrain
Task A2.4.2 – Analysis of mixture formation
Quantitative model validation

2000 rpm – imep=3 bar – RAFR = 1.8 – Stratified operation
7
 = 58° CA BTDC (5° CA ASI)
7
6.5
6
400
6
5.5
350
5
5
300
4.5
4
250
4
3.5
200
3
3
 = 50° CA BTDC (13° CA ASI)
150
100
2
2.5
2
1.5
7
16.5
50
400
0.5
6
1
350
50
100
150
200
250
300
350
400
450
5
300
0
05.5
4.5
4
250
3.5
 = 30° CA BTDC
200
3
2.5
7
150
2
6.5
400
100
1.5
6
1
5.5
350
50
0.5
5
INGAS Meeting, Regensburg, 13 October 2011
300
50
100
150
200
250
300
350
400
450
0
4.5
4
Mirko BARATTA
15
INGAS INtegrated GAS Powertrain
Task A2.4.2 – Analysis of mixture formation
Mixture formation @ full load
1500 rpm – IMEP=23 bar – EOI=120 deg
200° CA BTDC
8° CA ASI
160° CA BTDC
48° CA ASI
5° CA BTDC
203° CA ASI
12.0
9.0
6.0
3.0
1.0
0
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
16
INGAS INtegrated GAS Powertrain
Task A2.4.2 – Analysis of mixture formation
Mixture formation @ full load
1500 and 5000 rpm – MCE
1
fm = fraction of
flammable mixture
ff = fraction of
flammable fuel
ff
ff
fm
fm
fm, f f [-]
0.75
0.5
5000 rpm
0.25
1500 rpm
0
360
600
480
720
CA [deg]
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
17
INGAS INtegrated GAS Powertrain
Task A2.4.2 – Analysis of mixture formation
Mixture formation for different EOIs – 2000rpm, IMEP=3 bar
EOI 220
EOI 170
EOI 120
EOI 70
 Contours @ TDC
EOI 302
EOI 195
EOI 220
1
0.75
fm [-]
EOI 195
0.5
0.25
EOI 70
0
420
540
0 600
660
720
A [deg]
480
540
600
660
720
CA [deg]
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
18
INGAS INtegrated GAS Powertrain
Task A2.4.2 – Analysis of mixture formation
Mixture formation for different EOIs – 2000rpm, IMEP=3 bar
100
300
6
75
BSFC
CoV imep
Volumetric efficiency
IMEP_L (abs)
4
100
0
-360 -300 -240 -180 -120 -60
EOI [deg CA]
INGAS Meeting, Regensburg, 13 October 2011
2
0
0
50
25
0
2400
4
1800
3
1200
2
600
1
CH4
THC
CO
0
-360 -300 -240 -180 -120
CO, O2 [%]
200
NOx, THC, CH4 [ppm]
8
Vol. efficiency [%], IMEP_L (abs) [kPa]
400
CoV imep [%]
bsfc [g/kWh]
Correlation with MCE combustion and emission data (from DA2.11)
NOx
O2
-60
0
0
EOI [deg CA]
Mirko BARATTA
19
INGAS INtegrated GAS Powertrain
INGAS Subproject SPA2
• Dissemination
– Mirko Baratta, Nicola Rapetto, Ezio Spessa, Alois Fuerhapter, Harald
Philipp, “Numerical and Experimental Analysis of Mixture Formation
and Performance in a Direct Injection CNG Engine”, SAE 2012
World Congress, Detroit, MI, USA.
– Mirko Baratta, Andrea E. Catania, Nicola Rapetto, Alois Fuerhapter,
Matthias Gerlich, Wolfgang Zoels, “DI-CNG Injector Characterization
at Small Energizing Times by Means of Numerical Simulation”,
ASME Paper ICES2012-81186, ASME ICED Spring Technical
Conference, May 6-9, 2012, Torino, Piemonte, Italy.
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
20
INGAS INtegrated GAS Powertrain
INGAS Subproject SPA2
• Next Steps (month 37-42)
– To be discussed
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
21
INGAS INtegrated GAS Powertrain
INGAS Subproject SPA2
• Problems / Changes compared to plan
– No problems, no changes.
INGAS Meeting, Regensburg, 13 October 2011
Mirko BARATTA
22