Transcript Document
Chem 1140; Introduction to Organometallic Chemistry • General Mechanistic Principles • Reactions with Wilkinson’s Catalyst A. Organometallic Mechanisms Oxidation State: The oxidation state of a metal is defined as the charge left on the metal after all ligands have been removed in their natural, closed-shell configuration. This is a formalism and not a physical property! d-Electron Configuration: position in the periodic table minus oxidation state. 18-Electron Rule: In mononuclear, diamagnetic complexes, the total number of electrons never exceeds 18 (noble gas configuration). The total number of electrons is equal to the sum of d-electrons plus those contributed by the ligands. 18 electrons = coordinatively saturated < 18 electrons = coordinatively unsaturated. Cl Pd Pd for each Pd: Ox. state , Cl Cl bridging by lone pairs on Cl; each Cl acts as a 2-electron, mono negative ligands to one of the Pd's, and a 2-electron neutral donor ligand like PPh3 to the other Pd(II) d: 10 (4d 10 5s 0) - 2 = 8 electron count: : 4e- Cl : 2e- Cl : 2e8e- + d 8 = 16eunsaturated H Ox. State: 2 Cp -, 1 H -, 1 Cl Zr(IV) Cl d: 4 (4d 25s 2) - 4 = 0 Zr electron count: 2 Cp -: 12 H-: 2 Cl - : 2 Zr : 0 16 e-, unsaturated Bonding considerations donation: or M vacant dsp hyb rid backdonation: M filled d orb ital for M-CO: M dspn acceptor C O donor Structure • saturated (18 e-) complexes: - tetracoordinate: Ni(CO)4, Pd(PPh3)4 are tetrahedral - pentacoordinate: Fe(CO)5 is trigonal bipyramidal - hexacoordinate: Cr(CO)6 is octahedral z • unsaturated complexes have high dx2-y2; 16e- prefers square planar y x Basic reaction mechanisms - ligand substitution: M-L + L’ M-L’ + L can be associative, dissociative, or radical chain. L M + - + - X + - trans-effect: kinetic effect of a ligand on the role of substitution at the position trans to itself in a square or octahedral complex (ground-state weakening of bond). L M, repels negative charge to trans position. Lc Nu Lc Lt X + Nu- Pt X Lc Pt Lt Lc Lt Pt Lc X Lc Lc Pt Lt X Nu Lc Lc Lt Nu Nu Pt Lc + X- - oxidative addition: -L [Ph3P]4Pd -L [Ph3P]3Pd 16 e- [Ph3P]2Pd Br Ph 14 e- strong -donor L2Pd H (+II) Br L2Pd Br H Ph agostic (2e-/3-center bond) interactions 16 e- 16 e- Ph - reductive elimination: the major way in which transition metals are used to make C,C- and C,H-bonds! Me Pd PPh3 Ph3P Pd -L Me Ph3P Pd Me Ph3P-Pd Ph3P Ph3P Ph cis! Ph 12e- 14e? Ph +L Ph - migratory insertion: R Cp Zr Cp Cl 16e- O C CO R Cp Zr Cp Cl 18e- R 16e- O Cp Zr Cp Cl - -elimination/hydrometalation: -elimination H R Cp Zr Cp Cl R H Cp Zr Cp Cl hydrometalation R Cp Cp H Zr Cl - olefin metathesis: Fischer carbene complex OMe , 80 °C OMe + (OC) 5Cr 18e- OEt Ph Ph OEt (OC) 5Cr EtO OMe Ph (OC) 5Cr - transmetalation: R-M + M’-X R-M’ + M-X Summary of Mechanisms: - ligand substitution - oxidative addition/reductive elimination - migratory insertion/-elimination (carbo-, hydrometalation) - alkene metathesis - transmetalation Reactions with Wilkinson’s Catalyst Alkene Hydrogenation H2 cat. RhCl(PPh3)3 CO2Me CO2Me CO2Me H2 96:4 cat. PtO2 49:26 Mechanism PPh3 oxidative addition H Rh H Cl PPh3 H H -PPh3 [RhCl(PPh3)2] coordination R RhCl(PPh3)3 H +PPh3 R reductive elimination PPh3 R PPh3 H R Cl Rh H H H PPh3 Cl Rh H PPh3 migratory insertion Reductions O OH OH i-PrOH, KOH i-PrOH, KOH cat. RhCl(PPh3)3 cat. RhCl(PPh3)3 Where does the hydrogen come from???? Hydrosilylation Et or Et HSiMe2Ph cat. RhCl(PPh3)3 Et SiMe2Ph Hydrocarbonylation 0.4 equiv RhCl(PPh3)3 THPO CHO OTHP CH2Cl2 40 oC, 20 h H THPO O H OTHP Decarbonylation Et Ph O 1.0 equiv RhCl(PPh3)3 Et Ph H 93% retention Hydroformylation O H2, CO N H cat. RhCl(PPh3)3 O N H other minor products CHO Markownikow Hydroboration 1. catecholborane cat. RhCl(PPh3)3 Ph 2. H2O2, OH- OH Ph primary alcohol if the catalyst is partially oxidized Cycloisomerization H cat. RhCl(PPh3)3 TBDMSO TBDMSO H