Transcript Slide 1
Multidimensional Image Processing IWR, Univ. of Heidelberg Statistical Characterization of Technical Surface Microstructure Jochen Schmähling 1,2 Fred Hamprecht 2 1Corporate Research Robert Bosch GmbH Stuttgart / Tokyo 2Multidimensional Image Processing Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg Multidimensional Image Processing IWR, Univ. of Heidelberg Overview 1. Microtopology of technical surfaces 2. Microtopology analysis using Minkowski Functionals 3. Models for technical surfaces 4. Experimental results 5. Summary 5mm Common Rail Injector shim („Ausgleichscheibe“) Multidimensional Image Processing IWR, Univ. of Heidelberg Overview 1. Microtopology of technical surfaces 2. Microtopology analysis using Minkowski Functionals 3. Models for technical surfaces 4. Experimental results 5. Summary Multidimensional Image Processing IWR, Univ. of Heidelberg Microtopology of technical surfaces The topology of technical parts is investigated on three scales: Waviness 5mm 15mm Form 0,3mm Microtopology Form is the (intended) macroscopic shape Waviness occurs due to irregularities during the machining process Microtopology results from surface finishing process, e.g. grinding, shotblasting, polishing or eroding. Magnitude of microtopology of technical surfaces is usually of order of µm Multidimensional Image Processing IWR, Univ. of Heidelberg What is the role of microstructure? Miniaturization: The smaller the part, the more important small-scall structures, e.g. injection valve, injection nozzle Higher requirements for industrial parts: Higher stress, lower tolerances Optimization of functionality: Friction Wear Sealing Lubrication properties Multidimensional Image Processing IWR, Univ. of Heidelberg Measuring microtopology • First devices for surface roughness measurement around 1930 • Profilometer: Scanning of the surface using a stylus + Established and highly refined technique + widely accepted norms for analysis - Permanent contact necessary, slow Profilometer principle • Optical measurement instruments, especially white light interferometry + Fast and contactless + Twodimensional measuring area z White light interferometer principle Multidimensional Image Processing IWR, Univ. of Heidelberg Overview 1. Microtopology of technical surfaces 2. Microtopology analysis using Minkowski Functionals 3. Models for technical surfaces 4. Experimental results 5. Summary Multidimensional Image Processing IWR, Univ. of Heidelberg Features used in technical surface description • Goal: compact numeric description of relevant features • Questions: – How smooth/rough is a surface? Comparison of different surfaces – Which properties does the surface have? (lubrication, wear,…) Shot-blasted surface • Description using only a few features • In practice usually a very limited set of simple features is used. – Example: Mean squared deviation between the height data and the form of the part 2 shot-blasted surface 2 ground surface Multidimensional Image Processing IWR, Univ. of Heidelberg 1D and 2D microstructure parameters • 1D microstructure parameters (Roughness parameters) – Developed for the analysis of 1D profiles – Limited information content – Established standard • 2D microstructure parameters – Analysis of 2D height maps – All techniques (math. morphology, texture analysis) from image processing can be used • 1D-analysis Microstructure parameters allow for – the comparison of surfaces – the prediction of functional properties • Currently used 2D microstructure parameters are not satisfactory. How can the 2D height map information be used efficiently? 2D-analysis Multidimensional Image Processing IWR, Univ. of Heidelberg Microtopology analyis by thresholding • Binarization by thresholding Simulated surface • Transformation of the height map to a stack of level sets (excursion sets) • Microstructure description: – Description of the level sets for all thresholds – Analysis of random sets Multidimensional Image Processing IWR, Univ. of Heidelberg Minkowski functionals Apart from the relative area, which other descriptors are useful for random set description? Hadwiger theorem: Additive, rotation invariant and convex continous functionals on 2D sets can be expressed as linear combination of area, contour length and Euler characteristic of the set. Minkowski functionals offer a complete (in the above sense) description of the level sets. + - + Multidimensional Image Processing IWR, Univ. of Heidelberg Minkowski Measures • Euler Characteristic: Schnitte durch eine simulierte Oberfläche auf verschiedenen Schnitthöhen =104 =2 =-92 • The calculation of the three Minkowski measures for 2D sets yields three characterizing functions. Multidimensional Image Processing Characterizing functions + - + IWR, Univ. of Heidelberg Multidimensional Image Processing IWR, Univ. of Heidelberg Interpretation of the characterizing functions • Area: Bearing behaviour • Contour length: General smoothness assessment • Euler characteristic: – Number of peaks – percolation threshold material void =104 =2 Multidimensional Image Processing IWR, Univ. of Heidelberg One-class learning for change detection Only works for homogeneous class Multidimensional Image Processing IWR, Univ. of Heidelberg Overview 1. Microtopology of technical surfaces 2. Microtopology analysis using Minkowski Functionals 3. Models for technical surfaces 4. Experimental results 5. Summary Multidimensional Image Processing IWR, Univ. of Heidelberg Why are surface models helpful? • Model = simplified image of reality • Allows to describe a complex system with few parameters • Using a surface model, the surface structure can be predicted from process parameters • Example: Modelling a laser structuring process Process parameter: #Craters raw material processing measurement Multidimensional Image Processing IWR, Univ. of Heidelberg [Adler, 1981] Multidimensional Image Processing IWR, Univ. of Heidelberg Limitations Four GRF • all have same marginal • first three have same τ Multidimensional Image Processing IWR, Univ. of Heidelberg Boolean Grain models • Sinter materials: material consists of metal grains welded in a thermal process to form a solid material • Modelling with a Boolean grain model – Objects (“grains˝) are positioned randomly – Surface given by union of grains Measurement data 0.5mm Simulation of a Boolean model Microscope image • Applications in material science for modelling porous materials, e.g. sinter, sandstone • Complementary to random fields: random amplitudes random positions Multidimensional Image Processing Parametrizing Boolean Models • Density of grains • Shape of grains Convex grains are easiest to investigate • Boolean model in 2D + = • Extension to 3D + = IWR, Univ. of Heidelberg Multidimensional Image Processing IWR, Univ. of Heidelberg Boolean grain model Area, contour length and Euler characteristic depend on shape ( , , ) and number () of grains [Molchanov, 1995; Weil, 1995] Multidimensional Image Processing IWR, Univ. of Heidelberg Greenwood-Williamson model grains as capped cylinders Gaussian grain height distribution Multidimensional Image Processing IWR, Univ. of Heidelberg Multidimensional Image Processing IWR, Univ. of Heidelberg Overview 1. Microtopology of technical surfaces 2. Microtopology analysis using Minkowski Functionals 3. Models for technical surfaces 4. Experimental results 5. Summary Multidimensional Image Processing IWR, Univ. of Heidelberg Structured hard-chrome surfaces Material: hard chrome Structure: Hemispheres of random size positioned randomly Perfect example for a Boolean grain model Applications: Sheet metal production (texturing, feeding) Wear-resistant tubes Coating of forming tools Source: www.topocrom.com Multidimensional Image Processing IWR, Univ. of Heidelberg Structured hard-chrome surfaces Applications: Sheet metal production 10000x Source: www.topocrom.com Multidimensional Image Processing IWR, Univ. of Heidelberg Stochastic Geometry: Prediction of surface features Model parameters Model Optimization Comparison with optimal characterizing functions Expected characterizing functions Multidimensional Image Processing IWR, Univ. of Heidelberg Model estimation 0.01 100 0.005 0.005 200 0 -0.005 300 200 -0.005 -0.01 -0.01 400 400 -0.015 -0.015 500 -0.02 -0.025 600 100 200 300 400 Simulation 500 600 500 -0.02 -0.025 600 100 200 300 Measurement 400 -0.02 -0.01 0 0.01 0.02 -0.02 -0.01 0 0.01 0.02 -0.02 -0.01 0 height 0.01 0.02 30 20 10 0 Area fraction A 0 300 measured simulated 0.5 0 Euler characteristic 0.01 100 1 Contour length C Find simulation parameters such that empirical and analytically calculated MF fit. Practical application: Find process parameters such that the resulting material fulfills given functionality requirements formulated in terms of the shape of the MF 200 100 0 -100 Multidimensional Image Processing IWR, Univ. of Heidelberg Multidimensional Image Processing Shot-blasted surface IWR, Univ. of Heidelberg Multidimensional Image Processing IWR, Univ. of Heidelberg Overview 1. Microtopology of technical surfaces 2. Microtopology analysis using Minkowski Functionals 3. Models for technical surfaces 4. Experimental results 5. Summary Multidimensional Image Processing IWR, Univ. of Heidelberg Summary • Current methods for surface microstructure analysis are not satisfactory for 2D data • Minkowski measures are natural descriptors for binary images • Minkowski measures computed for level sets give characterizing functions • These characterizing functions can extend / generalize existing analysis techniques • Using surface models, surfaces with specific properties can be engineered. Outlook • Dilation on the level sets allows for a homogeneity analysis Multidimensional Image Processing IWR, Univ. of Heidelberg 29th Annual meeting of the DAGM Heidelberg, Sept. 12th-14th, 2007 Multidimensional Image Processing Topics - Image Analysis and Computer Vision Mathematical Foundations Low-level Vision, Segmentation Biological Vision and Natural Scene Statistics Graphical Models and Probabilistic Inference Combinatorial Methods, Perceptual Grouping Shape Representation and Analysis Surface Reflectance Recovery and Modeling Motion, Matching and Registration Tracking and Video Analysis Multi-View Geometry and 3D Reconstruction Object (Class) Recognition and Detection Knowledge Representation and High-Level Vision - Machine Learning and Statistical Data Analysis - Speech Recognition and Language Understanding - Biomedical Data Analysis and Imaging, Biometrics - Applications of Pattern Recognition in Natural Sciences - Industrial and Technical Applications of Pattern Recognition and Image Processing IWR, Univ. of Heidelberg Multidimensional Image Processing Acknowledgement • • • • • • • • • Deutsche Forschungsgemeinschaft (DFG) Bundesministerium für Bildung und Forschung (BMBF) Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) H.-L. Merkle Stiftung Heidelberger Druckmaschinen Athenaeum Stiftung Studienstiftung des deutschen Volkes Yxlon Security GmbH Hansgrohe GmbH IWR, Univ. of Heidelberg Multidimensional Image Processing IWR, Univ. of Heidelberg Acknowledgement Group for Multidimensional Image Processing Andres, Bjoern Eisele, Heiko Feistner, Lars Goerlitz, Linus Hader, Sören Hayn, Michael Heck, Daniel Hissmann, Michael Humbert, Silke Jaeger, Mark Kaller, Jochen Kelm, Michael Kirchner, Marc Koenig, Thomas Lerch, Kristoffer Li, Xin Menze, Bjoern Plaue, Matthias Renard, Bernhard Schmähling, Jochen Saussen, Benjamin Trittler, Stefan Wieler, Matthias Zhang, Huaizhong Multidimensional Image Processing Acknowledgement Thank you! (It is safe to wake up now.) IWR, Univ. of Heidelberg