Transcript Document

Non-Standard Neutrino Interactions
Enrique Fernández-Martínez
MPI für Physik Munich
Non-unitarity and NSI
Generic new physics affecting n oscillations can be
parameterized as 4-fermion Non-Standard Interactions:
Production or detection of a n associated to a l


2 2GF  n    PLl  f  PL, R f 
So that
p →  nt
n n → p  t
The general matrix N can be parameterized as:
N  1   U
Also gives
where
 †
but with
*
   
Non-unitarity and NSI matter effects
Non-Standard n scattering off matter can also be
parameterized as 4-fermion Non-Standard Interactions:


m
2 2GF 
n    PLn   f  PL, R f 
so that
Integrating out the W and Z, 4-fermion operators are
obtained also for the non-unitary mixing matrix
They are related to the production and detection NSI
Non-unitarity and NSI matter effects
Integrating out the W and Z, 4-fermion operators
for matter NSI are obtained from non-unitary mixing matrix


m
2 2GF 
n    PLn   f  PL, R f 
  ee nn ne  2  e nn ne  1  et nn ne  1


m
    e nn ne  1
  nn ne
 t nn ne 
  n n  1


n
n

n
n
t n
e
tt n
e
 et n e

They are related to the production and detection NSI
Direct bounds on prod/det NSI
From , , p decays and zero distance oscillations


ud
2 2GF  
l   PLn  u   PL, R d 
 ud
 0.042

  2.6 105
 0.087

0.025 0.042

0.1 0.013
0.013 0.13 


e
2 2GF 
  PLn  n    PLe
 e
 0.025 0.03 0.03


  0.025 0.03 0.03
 0.025 0.03 0.03


Bounds order ~10-2
C. Biggio, M. Blennow and EFM 0907.0097
Direct bounds on matter NSI
If matter NSI are uncorrelated to production and detection
direct bounds are mainly from n scattering off e and nuclei


m
2 2GF 
n    PLn   f  PL, R f 
0.05 0.5 
 1
 0.6 0.05 0.5 
 0.14 0.1 0.44
 d 


 u 
e
 m   0.1 0.03 0.1   m   0.05 0.008 0.05  m   0.05 0.015 0.05
 0.5 0.05
 0.5 0.05
 0.44 0.1 0.5 
3 
6 




Rather weak bounds…
…can they be saturated avoiding additional constraints?
S. Davidson, C. Peña garay, N. Rius and A. Santamaria hep-ph/0302093
J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle hep-ph/0512195
J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle 0711.0698
C. Biggio, M. Blennow and EFM 0902.0607
Gauge invariance
However
is related to


m
2 2GF 
n    PLn   f  PL, R f 


m
2 2GF  
l   PLl  f  PL, R f 
by gauge invariance and very strong bounds exist
→e
 → e in nuclei
t decays
See Toshi’s talk
S. Bergmann et al. hep-ph/0004049
Z. Berezhiani and A. Rossi hep-ph/0111147
Large NSI?
We searched for gauge invariant SM extensions satisfying:

Matter NSI are generated at tree level

4-charged fermion ops not generated at the same level


No cancellations between diagrams with different
messenger particles to avoid constraints
The Higgs Mechanism is responsible for EWSB
S. Antusch, J. Baumann and EFM 0807.1003
Large NSI?
At d=6 only one possibility: charged scalar singlet
Present in Zee model or
R-parity violating SUSY
L i L L i L 
c

2


c
2 
M. Bilenky and A. Santamaria hep-ph/9310302
Large NSI?
Since l = -l only  , t and tt ≠0
Very constrained:
→e
 decays
t decays
CKM unitarity
F. Cuypers and S. Davidson hep-ph/9310302
S. Antusch, J. Baumann and EFM 0807.1003
Large NSI?
At d=8 more freedom
Can add 2 H to break the symmetry between n and l with the vev
L i H  H i L  f f 

*
2

t
2 

-v2/2
n


n   f  f 

Z. Berezhiani and A. Rossi hep-ph/0111147; S. Davidson et al hep-ph/0302093
There are 3 topologies to induce effective d=8 ops with HHLLff legs:
Large NSI?
We found three classes satisfying the requirements:
Large NSI?
We found three classes satisfying the requirements:
1
Just contributes to the scalar propagator after EWSB


v2/2 Lc i 2 L L i 2 Lc

Same as the d=6 realization with the scalar singlet
Large NSI?
We found three classes satisfying the requirements:
2
The Higgs coupled to the NR selects n after EWSB
L i H  H i L  f f 

*
2

t
2 

-v2/2
n


n   f  f 

Large NSI?
But can be related to non-unitarity and constrained
2
 ij  10G F
2
Yi
v
v


2
2 i Mi

i
Yi
Mi
2

NN
†

 1 
2
Yj
v
v


2
2 j Mj
Yj
M
j
j
2

NN
†

 1 
Large NSI?
For the matter NSI
Where
is the largest eigenvalue of
And additional source, detector and matter NSI are
generated through non-unitarity by the d=6 op
Large NSI?
We found three classes satisfying the requirements:
3
Mixed case, Higgs selects one n and scalar singlet S the other
Large NSI?
Can be related to non-unitarity and the d=6 antisymmetric op
3
 ij  10G F
2
Yi
v
v


2
2 i Mi

i
Yi
Mi
2

NN
†

 1 
v
j
l
j
M Sj
l
j
 v
2
M
j
Sj
2
Large NSI?
At d=8 we found no new ways of selecting n
The d=6 constraints on non-unitarity and the scalar singlet
apply also to the d=8 realizations
What if we allow for cancellations among diagrams?
B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451
Large NSI?
B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451
Large NSI?
tick means selects n at d=8
without 4-charged fermion
bold means induces 4-charged fermion
at d=6, have to cancel it!!
B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451
Large NSI?
There is always a 4 charged fermion op that needs canceling
Toy model
Cancelling the 4-charged fermion ops.
L i H  H i L E 

*
2

t
2 


E 
B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451
NSI in loops
Even if we arrange to have

 

O
*

t
L
i

H

H
i 2 L E   E 

2
4
M
O

†

†

L  L H H  L  t L H t H E   E 
4
2M


 


We can close the Higgs loop, the triplet terms vanishes and
O k2

L

L E   E 

4
2
2M 16p
NSIs and 4 charged fermion ops induced with equal strength


Extra fine-tuning required at loop level to have k=0 or loop
contribution dominates when 1/16p2 > v2/M2
C. Biggio, M. Blennow and EFM 0902.0607
Conclusions



Models leading “naturally” to NSI imply:

O(10-3) bounds on the NSI

Relations between matter and production/detection NSI
Probing O(10-3) NSI at future facilities very challenging but
not impossible, near detectors like MINSIS excellent probes
Saturating the mild model-independent bounds on matter
NSI and decoupling them from production/detection
requires strong fine tuning
Other models for n masses
Type I seesaw
Minkowski, Gell-Mann, Ramond, Slansky, Yanagida,
Glashow, Mohapatra, Senjanovic, …
NR fermionic singlet
Type II seesaw
Magg, Wetterich, Lazarides, Shafi, Mohapatra,
Senjanovic, Schecter, Valle, …
D scalar triplet
Type III seesaw
Foot, Lew, He, Joshi, Ma, Roy, Hambye et al., Bajc et al.,
Dorsner, Fileviez-Perez
SR fermionic triplet
Different d=6 ops
Type I:
Type III:
Type II:
• non-unitary mixing in CC
• FCNC for n
• non-unitary mixing in CC
• FCNC for n
• FCNC for charged leptons
• LFV 4-fermions
interactions
A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058
Types II and III induce flavour violation in the charged lepton sector
Stronger constraints than in Type I
Low scale seesaws
But
1
N
d5  mn  m M mD so
t
D
mn
!!!
d 6  m M mD 
MN
†
D
2
N
Low scale seesaws
The d=5 and d=6 operators are independent
Approximate U(1)L symmetry can keep d=5 (neutrino mass)
small and allow for observable d=6 effects
See e.g. A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058
Inverse (Type I) seesaw
L= 1
-1
1
d5  mDt M N1M N1mD
d6  mD† M N2mD
 << M Type II seesaw
Wyler, Wolfenstein, Mohapatra, Valle, Bernabeu,
Santamaría, Vidal, Mendez, González-García,
Branco, Grimus, Lavoura, Kersten, Smirnov,….
YD
d 5  4 D 2
MD
YDYD†
d6 
M D2
Magg, Wetterich, Lazarides, Shafi,
Mohapatra, Senjanovic, Schecter, Valle,…
Low scale seesaws
The d=5 and d=6 operators are independent
Approximate U(1)L symmetry can keep d=5 (neutrino mass)
small and allow for observable d=6 effects
See e.g. A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058
Inverse (Type I) seesaw
L= 1
-1
1
d5  mDt M N1M N1mD
d6  mD† M N2mD
 << M Type II seesaw
Wyler, Wolfenstein, Mohapatra, Valle, Bernabeu,
Santamaría, Vidal, Mendez, González-García,
Branco, Grimus, Lavoura, Kersten, Smirnov,….
YD
d 5  4 D 2
MD
YDYD†
d6 
M D2
Magg, Wetterich, Lazarides, Shafi,
Mohapatra, Senjanovic, Schecter, Valle,…