Transcript スライド 1
Future Prospect of Accelerator-based Neutrino Oscillation Experiments and other next generation experiments Two of the essential gradients of lepto-genesis • CP violation • D(B-L) 0 Majorana 1 3 ‘slits’ interferometer - possibility of CP violation in nm→ne Interferences 3 ‘slits’ n3 n1 n3 nm n2 n2 n3 ne 2 1 ( m m 1 )L U*e3 Um3 Ue1U*m1 sin 2 3 4E n Dm2~3 x 10-3 2 1 ( m m * * 2 3 2 )L ne Ue3 Um3 Ue 2 Um 2 ) sin 4E n Interference Comparable amplitudes n anti-n ? n1 n2 n1 production (m 22 m11 )L ne U Um 2 Ue1U ) sin 4E n solar,Kamland * e2 detection * m1 2 -5 Dm2~8 x 10 2 Importance of nm → n e Appearance d : CP Violation in Lepton Sector in 3 generations scheme Pab = d ab 4 Re(U a*iU biU ajU b*j ) sin 2 (m 2j mi2 ) L 2 Im(U a*iU biU ajU b*j ) sin (m 2j mi2 ) L j i j i ne disappearance 1- Pee : a=b |Uai| 2 4 En 2 En Real nmne at Dm2 ~ 3 x 10-3 eV2 :interference of two Dm2’s →( small Ue3 small Dm122 ) Two comparable terms → CPV CPV sinq12 sinq23 sinq13 Dm212 (L/E) sind Solar and Atmospheric n Solar LMA solution→ (large q12, relatively large Dm212) Near max. mixing in atmospheric (q23~p/4) 3 Searches for non-zero q13 q13 with reactor experiments • <En> ~ a few MeV Disappearance • P(nene) = 1- sin22q13・sin2(1.27Dm231L/E) + O(Dm221/Dm231) Almost pure measurement of q13 with negligible matter effect. q13 with accelerator experiments • <En> ~ O(GeV) appearance experiments • P(nmne) = 1- sin2q23・sin22q13・sin2(1.27Dm231L/E) + many terms Appearance measurement of q13. P(nmne) also depends on d and mass hierarchy. 4 Current Proposals on Reactor Experiments Reactor q13 exp. (2007) Double Chooz approved Daya bay Reno Angra 1st generation: sin2(2q13)~0.02-0.03 2nd generation: sin2(2q13)~0.01 • 2006 Acc LBL exp. and Reactor q13 exp. are complementary. – Appearance signal versus Disappearance signal. – Statistics Limited versus Systematic Limited – Large CPV effect versus Pure q13 effect. – Similar Time scale (~2010) 5 3-flavor Oscillation (simplified) m3 Oscillation Probabilities when 2 Dm122 Dm23 Dm132 q23 :nm disappearance m2 m1 ( 2 Pm x 1 cos 4 q13 sin 2 2q 23 sin 2 1.27Dm23 L / En q13:ne appearance common ( 2 Pm e sin 2 q 23 sin 2 2q13 sin 2 1.27Dm13 L / En 6 ne appearance probability at L/E ~ 103 (km/GeV) P(nm ne) = 4C13 S13 S 23 sin 2 31 2 2 2 q13 8C13 S12 S13 S 23 (C12C23 cosd S12 S13 S 23 ) cos 32 sin 31 sin 21 2 CP conserving 8C13 C12C23 S12 S13 S 23 sin d sin 32 sin 31 sin 21 2 4S12 C13 (C12 C23 S12 S 23 S13 2C12C23 S12 S 23 S13 cosd ) sin 2 21 2 2 2 2 2 2 2 CP solar n aL matter effect 8C13 S13 S 23 (1 2S13 ) cos 32 sin 31 4E mass hierarchy ij = Dmij2 L / 4 E , Sij=sinqij, Cij=cosqij d -d, a -a for nmne L : flight length, E : neutrinoenergy, 2 2 2 2 Dmij2 mi2 m 2j , mi : mass eigenvalues Small numbers • S13 • sinΦ21 ~ 0.03 E L aL ~ 2L = 7.6 3 4E [ g / cm ] [GeV ] 4E 7 nm → ne Appearance Measurements • • L/E~3 x 102 (km/GeV) Three contributions 1 Term which is same for neutrinos and anti-neutrinos 2 CP violating term (constant in E) 3 Matter effect ( proportional to L or E at constant L/E) • It is almost impossible to change distance or neutrino energy To get 2+3 1. Compare Neutrinos and Anti-neutrinos 2. Compare with reactor data CPV Make matter effect small (where 2 >3) Low energy and relatively short distance Mass hierarchy Compare with higher energy measurements 3 8 nmne oscillation probability in sub-GeV neutrinos sin22q13=0.01 total q13 CP CP solar matter Depends on many parameters 9 Accelerator Neutrinos Near future T2K Nova 10 T2K Collaboration • 12 Countries – Canada, France, Germany, Italy, Japan – Korea, Poland, Russia, Spain, – Switzerland, UK, USA 60 Institutes, 300 Ph.D. members Still growing Proposed in 2000, budget approved in 2004 11 Non-zero mass of neutrinos ! Flavor Physics esp. history of neutrino studies show full of surprises ( Kamiokande for Kamioka Nucleon decay Experiment ! ) • Emphasis lepton ID and the determination of En • En and Detector technology 1. Look for un-expected in precision measurements of oscillation parameters • 3 generation frame-work (paradigm) ? • Consistency of Dm2 in disappearance and appearance processes • Sub-process of flavor changing process ( in addition to oscillation)? • Oscillation pattern 2. ne appearance • The last mixing to be found • q23~45o q12~34o, test q13 to 3o • Determine future direction of neutrino experiment • Lead to only one practically possible test of CPV in leptons • Complex phase in mixing in light neutrinos → leptogenesis?12 Main features of T2K The distance (295km) and Dm2 (~2.5x10-3 eV2 ) 1. Oscillation max. at sub-GeV neutrino energy – sub-GeV means QE dominant • Event-by event En reconstruction – Small high energy tail • small BKG in ne search and En reconstruction 2. Proper coverage of near detector(s) – Cross section ambiguity 3. Analysis of water Cherenkov detector data has accumulated almost twenty years of experience – K2K has demonstrated BG rejection in ne search – Realistic systematic errors and how to improve 4. Accumulation of technologies on high power beam 13 Beam energy QE is the best known process 1 10 En 14 Narrow intense beam: Off-axis beam 振動確率@ Dm2=3x10-3eV2 Anti-neutrinos by Super-K. reversing Horn current q Decay Pipe nm flux TargetHorns En (GeV) p decay Kinematics OA0° OA2° OA2.5° 0° 1 OA3° 2° 2.5° 3° 0 0 2 5 pp (GeV/c) 8 Quasi Monochromatic Beam Tuned at oscillation maximum Far/near ‘simpler’ to evaluate Statistics at SK (OAB 2.5 deg, 1 yr, 22.5 kt) ~ 2200 nm tot ~ 1600 nm CC ne ~0.4% at nm peak 15 Quasi-Elastic process nm + n → m + p n E n rec = m q (Em, pm) m m N E m m m2 2 m N E m p m cosq m dE ~ 60 MeV dE/E ~ 10% p QE inelastic CC 1p nm + n → m + p + p qm n En (reconstructed) – En (true) p’s p NC 1p nm + n → n + p + p’s n - m (Em, pm) p’s p n 16 PID in SK m-like e-like e m 17 18 19 ne appearance : q13 Off axis 2 deg, 5 years Dm 2 CHOOZ excluded at Off axis 2 deg, 5 years sin22q13>0.006 sin22q13 Estimated background in Super-K nm ne total Signal (~40% eff.) 10.7 1.7 0.5 24.9 114.6 139.5 10.7 1.7 0.5 24.9 11.5 36.4 20 nm ne (NC p0 beam 0.1 12.0 0.01 12.0 sin22q13 Signal + BG Sensitivity to q13 as a fuction of CP-phase d d d KASKA 90% KASKA 90% (NuFact04) (NuFact04) sin22q13 d →-d for n →anti-n 21 Disappearance En reconstruction resolution Good resolution of En determination is critical to observe depth of the dip (measure of sin22q) dE~60MeV <10% meaurement non-QE resolution QE inelastic 1-sin22q En (reconstructed) – En (true) Dm2 + 10% bin High resolution : less sensitive to systematics 22 Precision measurement of q23 , Dm223 possible systematic errors and phase-1 stat. •Systematic errors • normalization (10%(5%(K2K)) • non-qe/qe ratio (20% (to be measured)) • E scale (4% (K2K 2%)) • Spectrum shape (Fluka/MARS →(Near D.)) • Spectrum width (10%) OA2.5o d(sin22q23)~0.01 d(Dm223) <1×10-4 eV2 23 T2K Physics Sensitivity ne appearance (Strong d dependence ) nm disappearance Stat. only Daya Bay 90% (NuFact04) CHOOZ 90% sin22q13 >10 times improvement from CHOOZ Neutrino ↔ Anti-neutrino, Reactor (OA2.5) --68%CL --90%CL --99%CL Goal d(sin22q23)~0.01 (0.08 MINOS EPS2007) 2 d(Dm232)~<5×10-5 eV24 Status of JPARC 25 J-PARC Facility Materials and Life Science Experimental Facility Hadron Beam Facility Nuclear Transmutation 500 m Neutrino to Kamiokande Linac (350m) 3 GeV Synchrotron (25 Hz, 1MW) 50 GeV Synchrotron (0.75 MW) J-PARC = Japan Proton Accelerator Research Complex Joint Project between KEK and JAERI 26 From Linac to 3 GeV 3 GeV Extraction Point From 3 GeV to Materials and Life Middle of Linac Tunnel JPARC Neutrino Tunnel Upstream of Linac Tunnel Tunnel Tour 50 GeV Tunnel 27 The Neutrino Beam-Line Target-Horn System Target Station Muon Monitoring Pit Final Focusing Section 295km to Super-Kamiokande Preparation Section 100m SCFM at ARC Section Near Neutrino Detector Beam Dump Decay Volume 28 28 Full Reconstruction (October 2005 – April 2006) ~6000 ID PMTs were produced from 2002 to 2005 and were mounted from Oct.2005 to Apr.2006. All those PMTs were packed in acryic and FRP cases. Mount PMTs on a floating floor. Pure water was supplied and SK-III data taking has been running since July 11, 2006. 29 Schedule of T2K 2004 K2K 2005 2006 2007 2008 2009 T2K construction SK full rebuild Linac MR April 2009 n commissioning • Possible upgrade in future • 4MW Super-J-PARC + Hyper-K ( 1Mt water Cherenkov) – CP violation in lepton sector – Proton Decay 30 Next step Many possibilities • Intensity Upgrade of MR • R/D for upgrade/replacement of SK with a new hyper massive detector 31 CPV and mass hierarchy IF q13 has reasonable value Funding agency 32 CP Asymmetry ACP P(n m n e ) P(n m n e ) P' r r P ' r r = P(n m n e ) P(n m n e ) P' r r P ' r r 2 P '2 (d d = A' 1 2 2 P' P ' P' P' A' , P' P' r r r r d , d r r (rσ = σe σμ , r = e cross section, detection efficiencies ratios for e/m differences in neutrino and anti-neutrino Studied by T.Kobayashi33 m ) Contamination of wrong sign components nm beam nm beam right sign wrong sign Rate for nm is factor ~3 smaller than anti-nm due to cross section. 34 Cross sections 35 CP asymmetry in T2K d=p/4 q12=p/8 matter Both correction need to be estimated at ~10% level , , Pure CPV ,, cor. ACP~Aobs-0.04+0.1 matter corr.36 Water Cherenkov Detector 1st Phase (2009~, ≥5yrs) Super-Kamiokande(22.5kt) 2nd Phase (201x~?) Hyper-Kamiokande(~540kt) Proton decay e+π0 νK+ Reach: tp(e+p0)/B ~ 1035 yr tp(nK+)/B ~ 1034 yr and other modes 37 Other Possible choice ? 38 Sensitivity for CPV in T2K-II 4MW, 540kt 2yr for nm 6~7yr for nm CHOOZ excluded sin22q13<0.12@Dm312~3x10-3eV2 Dm212=6.9x10-5eV2 Dm322=2.8x10-3eV2 q12=0.594 q23=p/4 stat+5%syst. stat+2%syst. (signal+BG) stat only ACP 2 Dm12 sin 2q12 sin d 4 En sin q13 no BG signal stat only stat+10%syst. T2K 3 discovery T2K-I 90% 39 3 CP sensitivity : |d|>20o for sin22q13>0.01 with 2% syst. Proton Decay may be there, just around the corner Ultimate GUTs phenomena 2.9x1030 yr (‘minimal’ SUSY SU(5) ) Proton decay limit from Super-K ~100k ton year already 40 T2K to Korea ? Korea L=1000-1200km, q =1.0-4.0 J-PARC 41 hep-ph/0607255 Nova at FNAL 42