Transcript スライド 1
June 10th, 2004 @Kyoto U. M. Yokoyama (Kyoto University) for K2K collaboration 1 1. Introduction K2K experiment since 1999 First accelerator-based long baseline (250km) neutrino experiment. Search for nm disappearance and ne appearance 250km Pure nm beam (99%) w/ <En>~1.3GeV 50 kton Water Cherenkov detector 12GeV PS nm beamline Beam monitor Near detector 2 Flavor mixing in lepton sector Flavor eigenstates ≠ mass eigenstates ne nm nt m1 m2 m3 Sij:sinqij, Cij;cosqij Parameters: 3 mixing angle (q12,q23,q13) 1 complex phase (d) 3 Neutrino Oscillation Time evolution of neutrino Consider mixing b/w two flavors Consider neutrino generated as pure nm(cosq|n2>sinq|n3>) 22 im im t /4 p im 3 t /4 p 3 n ,t ,0 cos q e n 2 sinq ee n3 2 2 m If m2≠m3 , n is in mixed state after time evolution! 2 P n n ,t m m 2 Dm L(km) 2 2 1 sin 2qsin 1.27 2 eV E(GeV) If there is neutrino oscillation →Dm2≠0 →m≠0! 4 Super-Kamiokande atmospheric n 1.3x10-3<Dm2<3.0x10-3eV2 (@ sin22q=1, 90% CL) nm→nt oscillation? 5 Brief history of K2K 1995 Proposed to study neutrino oscillation for atmospheric neutrinos anomaly. 1999 Started taking data. 2000 Detected the less number of neutrinos than the expectation at a distance of 250 km. Disfavored null oscillation at the 2s level. 2002 Observed indications of neutrino oscillation. The probability of null oscillation is less than 1%. 2004 This result! 6 K2K Collaboration JAPAN: High Energy Accelerator Research Organization (KEK) / Institute for Cosmic Ray Research (ICRR), Univ. of Tokyo / Kobe University / Kyoto University / Niigata University / Okayama University / Tokyo University of Science / Tohoku University KOREA: Chonnam National University / Dongshin University / Korea University / Seoul National University U.S.A.: Boston University / University of California, Irvine / University of Hawaii, Manoa / Massachusetts Institute of Technology / State University of New York at Stony Brook / University of Washington at Seattle POLAND: Warsaw University / Solton Institute Since 2002 JAPAN: Hiroshima University / Osaka University CANADA: TRIUMF / University of British Columbia Italy: Rome France: Saclay Spain: Barcelona / Valencia Switzerland: Geneva RUSSIA: INR-Moscow 7 2. K2K experiment overview ~1011 nm/2.2sec (/10m10m) 12GeV protons p+ p monitor 10 200m decay pipe SK nt 100m mmonitor ~250km Near n detectors 2 1 . 27 D m L prob. sin2 2q sin2 ( ) En x10 n Energy 4 (MC) 12 ~106 nm/2.2sec nm (/40m40m) m Target+Horn x10 ~1 event/2days 250km (MC) no oscillation 8 6 8 4 Extrapolation p monitor + simulation 4 0 1 2 3 4 E n (Ge V) 5 Near detectors at KEK oscillation 2 0 1 2 3 4 E n (Ge V) Super-K 5 8 Neutrino beamline @ KEK Bird’s Eye Neutrino Beam Line 200m 100 m 9 Neutrino beam and the directional control X center ~1GeV neutrino beam by a dual horn system with 250kA. Y center 99 Jun The beam direction monitored by muons ≤1 mrad <1mrad ~5 years 04 10 Feb protons/pulse Accumulated POT (×1018) (×1012) Accumulated POT (Protons On Target) 8.9×1019 POT for Analysis (previous results: 4.8 ×1019 POT) Jan 99 K2K-II K2K-I Jan 00 Jan 01 Jan 02 Jan 03 Jan 04 11 Near detector system at KEK 1KT Water Cherenkov Detector (1KT) Scintillating-fiber/Water sandwich Detector (SciFi) Lead Glass calorimeter (LG) before 2002 Scintillator Bar Detector (SciBar) from 2003 Muon Range Detector (MRD) Muon range detector 12 SciBar Detector Full-active, fine-segment Extruded scintillator detector made of Scintillator Bars (15t) n 2.5x1.3x300cm3 cell ~15000 channels Multi-anode WLS fiber+MAPMT readout PMT (64 ch.) 3m Detect short (~10cm) track p/p separation using dE/dx Precise n spectrum measurement n interaction study 1.7m Wave-length shifting fiber 13 Detector Photos Scintillators (64layers) EM calorimeter Fibers and front-end elec.14 Just Completed! Aug. 22, 2003 Far detector : Super-Kamiokande 1996.4 Start data taking (SK- I) C Scientific American 1999 SK- I K2K start Water Cherenkov detector 1000 m underground 50,000 ton (22,500 ton fid.) 11,146 20 inch PMTs 1,885 anti-counter PMTs n 42m ~5years 39m SK- II K2K-II 2001.7 Stop data taking for detector upgrade 2001.11 Accident (~7000 inner PMTs, 1100 outer PMTs were destroyed) partial reconstruction of the detector 2002.10 resume data taking (SK- II) 2002.12 resume K2K beam (K2K-II) 16 SK is back ! Full water on 10-Dec.-2002 Jan.-2003, fully contained event Acrylic + FRP vessel Sep.-2002, before water filling 17 GPS SK Events Tspill SK TOF=0.83msec TSK Decay electron cut. 500msec 20MeV Deposited Energy No Activity in Outer Detector Event Vertex in Fiducial Volume More than 30MeV Deposited Energy 5msec Analysis Time Window 108 events (K2K-1:56) -0.2<TSK-Tspill-TOF<1.3msec (BG: 1.6 events within 500ms 2.4×10-3 events in 1.5ms) TDIFF. (ms) 18 3. Analysis Overview KEK Observation #n, pm and qm Measurement F(En), n int. n interaction MC Far/Near Ratio (beam MC with p mon.) SK Observation #n and Enrec. (sin22q, Dm2) Expectation #n and Enrec. 19 4. Near Detector measurements Event rate measurement (#of nint.) Measurement w/ 1KT Cross-checked by other detectors Spectrum shape measurement 1KT, SciFi, SciBar (pm, qm) Measure spectrum and nQE/QE (n interaction model) Predict number of event and spectrum shape at SK 20 Neutrino Interaction @~1 GeV & En reconstruction - nm + n → m + p n m (Em, pm) qm p - nm + n → m + p + p qm n m (Em, pm) nm + n → n + p + p’s n p’s p m N E m p m cosq m CC QE ~100% efficiency for NSK can reconstruct En(qm,pm) CC nQE (1pi, multi-pi, coherent,DIS) ~100% efficiency for NSK Bkg. for En measurement NC ~40% efficiency for NSK p’s p E n rec m N E m m m2 2 s/E (10-38cm2/GeV) n 1 Total (NC+CC) CC Total CC quasi-elastic DIS CC single p NC single p0 5 21 4.1 Event rate measurement @1KT The same detector technology as Super-K. Sensitive to low energy neutrinos. N exp SK N obs KT F F ( En )s ( En )dEn M SK SK M KT KT SK ( En )s ( En ) dEn SK Far/Near Ratio (by MC)~1×10-6 M: Fiducial mass MSK=22,500ton, MKT=25ton : efficiency SK-I(II)=77.0(78.2)%, KT=74.5% +11.6 exp NSK =150.9 -10.0 NSKobs=108 22 4.2 Measurement with SciBar Full Active Fine-Grained detector (target: CH). Sensitive to a low momentum track. Identify CCQE events and other interactions (non-QE) separately. CCQE Candidate n CCQE p non-QE DATA CC QE CC 1p CC coherent-p CC multi-p m Dqp 2 track events p m 25 Dqp (degree) 23 4.3 Near Detector Spectrum Measurements 1KT SciBar Fully Contained 1 ring m (FC1Rm) sample. 1 track, 2 track QE (Dqp≤25), 2 track nQE (Dqp>25) where one track is m. SciFi 1 track, 2 track QE (Dqp≤25), 2 track nQE (Dqp>30) where one track is m. 24 A hint of K2K forward m deficit. K2K observed forward m deficit. A source is non-QE events. For CC-1p, Suppression of ~q2/0.1[GeV2] at q2<0.1[GeV2] may exist. For CC-coherent p, The coherent pmay not exist. We do not identify which process causes the effect. The MC CC-1p (coherent p) model is corrected phenomenologically. Oscillation analysis is insensitive to the choice. q2rec Preliminary DATA CC 1p CC coherent-p q2rec (GeV/c)2 (Data-MC)/MC SciBar non-QE Events 25 q2rec (GeV/c)2 4.4 Near Detectors combined measurements (pm,qm) for 1track, 2trackQE and 2track nQE samples F(En), nQE/QE Fitting parameters F(En), nQE/QE ratio Detector uncertainties on the energy scale and the track counting efficiency. The change of track counting efficiency by nuclear effect uncertainties; proton re-scattering and p interactions in a nucleus … Strategy ① Measure F(En) in the more relevant region of qm20 for 1KT and qm10 for SciFi and SciBar. ② Apply a low q2 correction factor to the CC-1p model (or coherent p). ③ Measure nQE/QE ratio for the entire qm range. 26 qm (MeV/c) En KT data QE (MC) nQE(MC) MC templates 0-0.5 GeV 0.5-0.75GeV 0.75-1.0GeV Pm (MeV/c) • n flux FKEK(En) (8 bins) • n interaction (nQE/QE) 1.0-1.5GeV • • • • 27 Flux measurements c2=638.1 for 609 d.o.f F(En) at KEK preliminary F1 ( En< 500) = 0.78 0.36 F2 ( 500 En < 750) = 1.01 0.09 F3 ( 750 En <1000) = 1.12 0.07 F4 (1500 En <2000) = 0.90 0.04 F5 (2000 En <2500) = 1.07 0.06 F5 (2500 En <3000) = 1.33 0.17 F6 (3000 En ) = 1.04 0.18 nQE/QE = 1.02 0.10 The nQE/QE error of 10% is assigned based on the variation by the fit condition. q>10(20 ) cut: nQE/QE=0.95 0.04 standard(CC-1p low q2 corr.): nQE/QE=1.02 0.03 No coherent: p=nQE/QE=1.06 0.03 En 28 1KT: m momentum and angular distributions. with measured spectrum 0 800 pm (MeV/c) 1600 0 qm (deg.) 90 29 SciFi (K2K-IIa with measured spectrum) qm 1trk Pm 1trk Pm 2trk QE qm 2trk QE Pm 2trk non-QE qm 2trk non-QE 30 0 2 (GeV/c) 0 40 (degree) SciBar (with measured spectrum) Pm 1trk Pm 2trk QE Pm 2trk nQE qm 1trk qm 2trk QE qm 2trk nQE 31 5. Super-K oscillation analysis Total Number of events Enrec spectrum shape of FC-1ring-m events Systematic error term L(Dm 2 , sin 2q , f x ) Lnorm (Dm 2 , sin 2q , f x ) Lshape (Dm 2 , sin 2q , f x ) Lsyst ( f x ) f x : Systematic error parameters Normalization, Flux, and nQE/QE ratio are in fx Near Detector measurements, Pion Monitor constraint, beam MC estimation, and SuperK systematic uncertainties. 32 K2K-SK events K2K-alll (K2K-I, K2K-II) FC 22.5kt 1ring m-like for Enrec e-like Multi Ring DATA (K2K-I, K2K-II) 108 (56, 52) 66 (32, 34) 57 (56) (30, 27) 9 (2, 7) 42 (24, 18) preliminary MC (K2K-I, K2K-II) 150.9 (79.1, 71.8) 93.7 (48.6, 45.1 ) 84.8 (44.3, 40.5) 8.8 (4.3, 4.5) 57.2 (30.5, 26.7) Ref; K2K-I(47.9×1018POT), K2K-II(41.2×1018POT) 33 Lnorm (Dm , sin 2q , f ) 2 x Lshape(Dm , sin 2q , f ) 2 x KS probability=0.11% #SK Events Toy MC Expected shape (No Oscillation) CC-QE assumption 108 150.9 En rec Enrec[GeV] (mN V ) Em mm2 2 mNV V 2 2 (mN V ) Em pm cosq m 34 V: Nuclear potential 6. Results Best fit values. sin22q1.53 Dm2 [eV2] = 2.1210-3 Best fit values in the physical region. sin22q1.00 A toy MC Dm2 [eV2] = 2.7310-3 Dm2 preliminary 14.4% DlogL=0.64 2.73 sin22q=1.53 can occur by statistical fluctuation with 14.4% probability. 1.00 1.53 sin3522q Dm2[eV2] Data are consistent with the oscillation. preliminary NSKobs=108 NSKexp (best fit)=104.8 Best Fit KS prob.=52% Based on DlnL sin22q Enrec[GeV] 36 nm disappearance versus En shape distortion En shape NSK (#nm) Dm2[eV2] Dm2[eV2] sin22q Both disappearance of nm and the distortion of En spectrum have the consistent result. sin22q 37 Null oscillation probability preliminary The null oscillation probabilities are calculated based on DlnL. K2K-I nm disappearance En spectrum distortion Combined K2K-II K2K-all 2.0% 3.7% 0.33%(2.9s) 19.5% 5.4% 1.1% (2.5s) 1.3% 0.56% 0.011% (2.5s) (2.8s) (3.9s) Disappearance of nmand distortion of the energy spectrum as expected in neutrino oscillation. K2K confirmed neutrino oscillation discovered in Super-K atmospheric neutrinos. 38 8. Summary K2K has confirmed neutrino oscillations at 3.9s. With 8.9×1019 POT, Disappearance of nm Distortion of En spectrum Dm2[eV2] 2.9s 2.5s preliminary 1.7x10-3<Dm2<3.5x10-3eV2 @sin22q=1 (90%C.L.) 0.006 0.004 0.002 0.0 0.2 0.4 0.6 0.8 1.0 sin22q 39 Backup 40 7. Other Physics in K2K (based on K2K-I data) nm +H2ONC1p0 nmne search not NC1p0 Mgg(MeV) s (n m NC1p 0 ) =0.0650.0010.007 s (n m CCall ) =0.064 (prediction) Dm2[eV2] 90%CL limit 90%CL sensitivity PRL accepted sin22qme preliminary 41 1KT: m momentum and angular distributions. with measured spectrum flux measurement low q2 corr. 0 800 1600 pm (MeV/c) 0 20 qm (deg.) 42 90 SciFi (K2K-IIa with measured spectrum) qm 1trk Pm 1trk flux measurement Pm 2trk QE qm 2trk QE Pm 2trk non-QE qm 2trk non-QE 43 0 2 (GeV/c) 0 10 40 (degree) SciBar (with measured flux) qm 1trk Pm 1trk flux measurement Pm 2trk QE qm 2trk QE qm 2trk nQE Pm 2trk nQE 44 10 Log Likelihood difference from the minimum. DlnL DlnL - 68% - 90% - 99% Dm2[eV2] - 68% - 90% - 99% sin22q Dm2<(1.7~3.5)×10-3 eV2 at sin22q=1.0 (90% C.L.) 45 The change of NSKexp in K2K-I (Bugs) The detector position 295m 294m -1% 294m 295m MC difference between KT and SK KT; MA(QE)=1.1 SK; MA(QE)=1.0 s(NCel)KT=1.1×s(NCel)SK Efficiency change! -1% NSKexp Change ~2% 46 47 CC-1p suppression versus coherent p 48 Systematic Bias without the MC correction. ND (SciBar) measurement DATA; MC w/ CC-1p suppression MC template; Default MC Oscillation Results Default MC for ND and SK sin22q=1.00 Dm2=2.73 ×10-3 eV2 Prob.(null oscillation)=0.0049% Toy MC Corrected MC sin22q=1.00 Dm2=2.65×10-3eV2 Prob.(null oscillation)=0.011% systematic bias There is a small bias in nQE/QE and the low energy flux. flux nQE/QE 49 Oscillation result with a default MC Without low q2 MC correction The result w/o low q2 MC correction gives the better (biased) 50 measurement due to the more low energy flux and the smaller nQE/QE. K2K-I vs K2K-II 51 K2K-I vs K2K-II 52 nµ Disappearance Result (K2K-I) PRL 90(2003)041801 Null oscillation probability: less than 1%. Dm2=1.5~3.9 x 10-3 eV2 @sin22q1(90%CL) Normalized by area Expectation w/o oscillation Best Fit Best fit: Dm2=2.8 x10–3eV2 Reconstructed En Allowed region 53 Extrapolation from Near to Far sites x10 10 x10 16 12 12 8 250km n beam x10 10 x10 Energy 12 4 11 Radius x10 4 8 3 E n (GeV) 4 5 0 x10 4 8 12 Radius (m) SK (insensitive to primary 3mradprotons) Measure, N(pp, qp) 4 just after the horns. 2 0 1 2 3 4 5 4 5 0 x10 Energy 4 8 12 Radius (m) 5 12 Radius 8 SK 3mrad 4 2 0 1 2 3 E n (GeV) 4 5 0 1 2 3 Radius (km) 5 12 PION moniter 6 Gas Cherenkov8 detector: 4 3 6 FD (<2m) 4 2 2 4 8 1 1 x10 4 8 12 4 4 ×104 E n (GeV) 16 8 0 8 0 ×1010 11 0 1 2 3 1.0×10-6 54 55