Le wearable computing - Site des Pages Perso du LIG

Download Report

Transcript Le wearable computing - Site des Pages Perso du LIG

Le wearable computing

Le wearable computing

"Un ordinateur devrait être "porté" sur soi, interagir avec l'utilisateur en continu selon le contexte et agir en tant qu'assistant à diverses tâches" Thad Starner,

Wearable Computing

Group, MIT

Plan

• • •

Vue d’ensemble du wearable computing

Qu’est ce que le wearable?

• • Pourquoi le wearable ?

Équipement •

Le wearable computing concrètement

Défis du wearable Applications Travail du MIT Media Lab

Qu’est ce que le wearable computing ? (1/2)

Définitions

• • • La réalité virtuelle La réalité augmentée Ubiquitous computing (l’ordinateur partout)

• • • • • • • •

Qu’est ce que le wearable computing ? (2/2)

Le wearable computer idéal (1/4)

Un accès permanent au services

• • • Le système interagit à n’importe quel moment avec l’utilisateur Accès rapide et intuitif Systèmes mobiles et peu encombrants

Le wearable computer idéal (2/4)

Modéliser l’environnement

• • • État physique et mental de l’utilisateur Etat interne du système Modélisation observable

Le wearable computer idéal (3/4)

Des modes d’interactions adaptés

• • • • • Adapter les entrées/sorties en fonction du contexte Évaluer la pertinences des informations Minimum d’attention S’adapter au fil du temps Encourager la personnalisation

Le wearable computer idéal (4/4)

• • • Une définition ambitieuse Nécessite une bonne modélisation de l’utilisateur Progrès à venir en IHM et IA

Pourquoi le wearable ? (1/3)

• • • Minimiser l ’encombrement, la redondance Améliorer la connectivité, les services Réduire les coûts de développement

Pourquoi le wearable ? (2/3)

• • • Faciliter la communication Pense-bête intelligent : proactif et personnel Un objet physique comme lien hypertexte

Pourquoi le wearable ? (3/3)

• • • Un outil puissant Faire du wearable un produit grand public Défis techniques, sociaux et logistique

Équipement

• • • • Périphériques d’entrées Système d’affichage CPU et alimentation Exemples d’architectures matérielles

Twiddler 2

• • • • • Pointeur: IBM Trackpoint touche: 16 Sortie: PS2 souris et signal clavier Poids: 165 g Prix : $199.00

WearClam

• • • • Sortie programmable : TTL-RS232, PWM, FM, etc...

Poids : moins de 50g 9 boutons Sortie par câble

Clavier WristPC-L3 Systems

• • • Sortie PS/2 ou USB Poids : 255g Prix : entre $469 et $569

SenseBoard

• • • • • Clavier virtuel Saisie multi-support Analyse du mouvement des doigts Simulation d’une souris Communication par ondes radio ou câble

Reconnaissance vocale

• • • • IBM - Voice Systems Dragon Systems – NaturralySpeaking Philips – Speech processing Jabra - EarSet

MicroOptical

• • • • • S’adapte sur une paire de lunettes neutre Écran à cristaux liquides Résolution : de 320*240 à 640*480 Poids : 7g Prix : $1000 à $2500

Microvision

• • • • • Projection d’images dans la rétine Effet 3D Résolution : de 640*400 à 800*600 Équivalent à un moniteur 19’’ Poids : 657g

TekGear – M2

• • • Résolution : 800*600 Poids : 210g Prix : de $3500 à $5000

LiteEye 400

• • • Opaque Résolution : 800*600 Poids : 42g

VIA II PC (1/2)

On/Off Articulation Connecteur batterie Slot PC Card Radiateur 6.

7.

Ports série / USB •Poids : 625g Connecteur secteur Interface opérateur

VIA PC II (2/2)

• • • • • Entrées / Sorties : Full duplex audio Vidéo SVGA Interface de communication RS 232 1 bus USB Interface souris et clavier

Xybernaut – Mobile assistant (1/4)

• • • • • Processeur : Pentium MMX 200 / 233Mhz RAM : 32 à 160 Mo Disque dur : 2 à 8 Go OS : Microsoft Windows Alimentation : Batterie Lithium ion

Xybernaut – Mobile assistant (2/4)

• • • • • • • UC: Slot CardBus Connecteurs pour écran tactile ou « head-up » Ports USB Carte son full-duplex intégrée Fixation à la ceinture ou dans une veste Poids :795g Dimensions: 117*190*63 mm

Xybernaut – Mobile assistant (3/4)

• • • • Écran: VGA ou SVGA couleur Résolution : de 640*480 à 800*600 Poids: de 520g à 1020g Écran tactile

Xybernaut – Mobile assistant (4/4)

• • • • Head up: Reflet dans un miroir Couleur  Écran 15’’ XyberCam™ video camera

Charmed Technologie charmIT Kit(1/2)

• • • • • • • • Processeur Pentium MMX 266Mhz 64 MEG RAM 1 port Ethernet 100Mb 2 PC Card (PCMCIA) slots 1 port USB, 1 port SVGA 2 ports série, 1 interne et 1 externe Disque dur 10 GB Linux pre-installé

Charmed Technologie charmIT Kit(2/2)

• • • Ecran de micoOptical Clavier Twiddler 2 Prix : entre $1 995 et $6 495

IBM wearable PC prototype (1/2)

• • • • • • • Processeur Intel Pentium MMX Technology 233MHz RAM: 64MB(EDO) Video RAM: 2MB Disque dur: IBM MicroDrive 340MB Port USB Port infrarouge : Max 4Mbps Slot Compact Flash Card

IBM wearable PC prototype (2/2)

• • • • • Audio: Microphone,Earphone, SoundBlaster Pro Compatible Micro Display: 320x240 pixels 256 gray scale Dimension: 26* 80* 120mm Weight: 370g Operating System: Windows98/95

Le wearable computing concrètement

Défis du wearable

• • •

Utilisation de l’énergie

Problèmes

Facteur le plus limitant Une alimentation par périphérique Frustration de recharger le système pour l’utilisateur

Défis du wearable

Utilisation de l’énergie

• • • • •

Solutions

Batterie longue durée au plutonium-238 Auto-alimentation des capteurs Énergie produite en marchant La nourriture Alimentation par ondes radio

Défis du wearable

Dissipation de la chaleur

Problèmes

• • • MIPS / watt : un paramètre plus important que la fréquence d’horloge Contrainte : ne jamais dépasser 40°C Facteur limitant dans la conception de système portables

Défis du wearable

Dissipation de la chaleur

• • • •

Solutions

Ventilateurs, radiateurs, composants moins gourmands en énergie Profiter de l’environnement thermique de l’utilisateur Réservoirs de chaleur Adapter la consommation d’énergie à l’environnement thermique

Défis du wearable

Réseau

• • • Bits/sec/watt : une mesure significative Besoin de standards Plusieurs types de réseaux – – Wearable au réseau fixe Différent composants entre eux – Du wearable aux objets environnants

Défis du wearable

Communications entre les composants du wearable

• • • Standards pour la découverte de ressource Transmissions faible coût Connections électriques dans les vêtements

Défis du wearable

Communications avec les objets environnants

• Balises de positionnement Locust – Microprocesseur et un système infrarouge – – – Auto-alimenté Transmet son ID à intervalle régulier Le wearable upload des données à la balise

Exemple d’utilisation du Wearable

• • • Projet Land Warrior et Felin Mobile language traduction system Projet Fast (Factory automation support technology) • Projet du MIT Media lab

Application militaire

• • USA : projet Land Warrior 600 M de dollars 2003  commando 2008  tous les fantassins France : projet Felin (Fantassin à équipement et liaisons intégrés) 2005  première version 2015  version finale

Application militaire

• • • • Réduire les risque Corriger les déficiences du soldat Augmenter la connaissance du terrain Identification amis/ennemis

Le casque

• • • • • • Vision nocturne Évaluation des distances Dispositif allier Positions ennemis Outils de navigation État physique

Le renseignement

• • • Carte Repérage GPS Envoi de renseignements

Le Famas

• • • • • Conduite de tir Système de saisie Capture d'images Laser de visée/verrouillage Laser d’identification

La combinaison

• • • • • • UC Capteurs Diagnostic médical Climatisée NBC Furtive

Projet FELIN

• • • • • • •

Thomson-CSF

conduite de tir, : architecture du système, et la

Giat Industries

: facteurs humains et interface avec fusil FAMAS

Aéro:

le logiciel

Bertin

: la génératrice autonome,

CGF Gallet:

le casque,

Sextant Avionique:

le visuel de casque,

Paul Boyé

: la tenue de combat

VTN Industries:

la structure de portage.

Mobile Language Translation System

• • • • •

Hardware

ViA II PC Microphone à main Casque audio Écran tactile VIA

Software

ViA Language Translation software

Projet FAST (Factory Automation Support Technology)

Projet FAST

• • • • • Factory Automation Support Technology Milieux industriel Aide à l’utilisateur Principe du « n’importe où » Personnel de supervision et maintenance

Projet FAST équipement

• • • • • Processeur Intel 486, 75 Mhz, 16 Mb RAM 500M disque dur Carte vidéo SVGA Son 16 Bit Réseau sans fil

Travaux du MIT Media lab

• • • •

Hive : une architecture logicielle adaptée au wearable

Architecture à agents distribués Peer-to-peer Relie des systèmes hétérogènes Mise en réseau de ressources locales

Travaux du MIT Media lab

Agents Hive

• • • • • Objet Java distribué et un thread Autonomes Auto-descriptifs Interactifs Mobiles

Travaux du MIT Media lab

Hive

• • • • Shadows Cells Interface graphique Service de découverte d’agents

Travaux du MIT Media lab

Description de la plateforme • • • • JVM Wearable Lizzy de Thad Starner Réseau sans fil : Digital Roamabout Balises Locust

Travaux du MIT Media lab

Applications

• • • • Agenda automatique Sélection d’un projecteur Context aware alarm filtering Where’s Brad ?

Conclusion

• • • • Beaucoup de paramètres à prendre en compte dans la conception Collaborations et meetings organisés par les grands groupes et centres de recherches Difficulté de concevoir des systèmes généraux Travail au niveau de l’intelligence artificielle