Transcript Slide 1

Analog to Digital in a Few Simple
Steps
A Guide to Designing with SAR ADCs
Miro Oljaca
Senior Applications Engineer
Texas Instruments Inc
Tucson, Arizona USA
[email protected]
SAR ADC’s Block Diagram
Sample & Hold
Amplifier
Sampling
Signal
Equivalent Input Circuit
SAR ADC
Sample & Hold Amplifier
VIN
S1
S2
RS1
+
CSH
From the Data Sheet for ADS8326:
- Sampling capacitor is 48pF
- Sampling switch resistance is 50Ω
VSH0
Sample and Conversion Process
VIN
S1
S2
RS1
VIN
+
CSH
VSH0
S1
S2
RS1
+
CSH
VSH0
Sample and Conversion Timing
Voltage Ripple on The Input of
ADC
Sampling
Signal
VIN
S1
RS1
CSH
Analog Input
Signal
Voltage Across Sampling
Capacitor
VCSH
VIN
S1
VIN
1/2 LSB
RS1
VCSH(t)
t=0
CSH
VSH0
t0
tAQ
Time

t
VCSH (t )  VCSH (t0 )  [VIN  VCSH (t0 )] (1  e  )
  RS1  CSH
Settling Time as a Function of
Time Constant
VIN  VCSH (t AQ )  12 LSB
VCSH(tAQ) is voltage across the CSH, at the end of the sampling period
tAQ is acquisition time, the time from the beginning of the sampling period (t0)
to the end of the sampling period
1
FSR
LSB  N 1
2
2
(LSB = Least Significant Bit, FSR is the full-scale range of the N-Bit converter)
t AQ  k1 
k1  ( N  1)  ln(2)
Time-Constant-Multiplier (k1)
for SAR ADC
Resolution
k1
time-constant-multiplie
N+1
1/2 LSB accuracy, 1/2
8
10
12
14
16
18
20
6.2
7.6
9.0
10.4
11.8
13.2
14.6
ADC
*note – using worst case values: VIN = full-scale voltage or 2N, VSH0 = 0V
SAR ADC With Input RC Filter
SAR ADC
VCSH
RF
VIN
S1
S2
RS1
+
CF
RF  CF 
CSH
t AQ
( N  1)  ln(2)
VSH0
ADC Input With Proper RC Filter
Start Acquisition
End Acquisition
ADC Input With Wrong RC Filter
Start Acquisition
End Acquisition
Op Amp Driving RC Filter
-
+
RO
RF
VOA
CF
Modified Open-Loop
Voltage Gain
140
120
Voltage Gain (dB)
100
fPX, GPX
80
60
fZX, G ZX
-40dB/Dec
40
-20dB/Dec
fU
20
-20dB/Dec
0
fC
-20
1
10
100
1k
10k
Frequency (Hz)
100k
1M
10M
Added Pole and Zero
1

2  ( RO  RF )  C F
Frequency of added pole
f PX
Frequency of added zero
f ZX 
Gain of added pole
GPX
Gain of added zero
GZX
1
2  RF  C F
 f PX 
 20  log

f
 U 
 f ZX 
 GPX  40  log

f
 PX 
Good Design Guideline
fC 
1
2
f ZX 
fU
1
2
fC
1
4
fU
or
f C  12 fU
f ZX  12 f C
or
f ZX 
GZX  6dB
f ZX  14 fU
GZX  6dB
f PX  101 f ZX
RO
RF 
9
Final Circuit
SAR ADC
OP AMP
VCSH
-
RO
RF
VIN
S1
S2
RS1
+
+
CF
CSH
VSH0
Minimum Acquisition Time
and Op Amp’s GBW
•
•
Calculate time-constant multiplier
Determine minimum time-constant
•
Calculate frequency of added zero
•
Find Unity Gain Bandwidth
k  ( N  1)  ln(2)

f ZX
t AQ
k
1

2 
GBW  4  f ZX
Minimum Acquisition Time for
Different Op Amps
INA155
INA128
INA331
OPA340
OPA363
OPA2613
OPA627
OPA381
OPA727
OPA228
OPA350
OPAy365
OPA2889
OPA211
THS4281
OPA358
Medium Speed, Precision INA
High Precision, 120dB CMRR
High Bandwidth, Single Supply
CMOS, 0.0007% THD+N
1.8V, High CMRR, SHDN
Dual VFB, Low Noise
Ultra-Low THD+N, Wide BW
Precision High-Speed Amp
CMOS, e-trim™, Low Noise
Precision, Low Noise, G ≥ 5
Precision ADC Driver
High-Speed, Zero-Crossover
Dual, Low Power, VFB
36V, Bipolar Precision
Very Low Power RRIO
CMOS, 3V Operation, SC70
GBW
(MHz)
fZ
(MHz)
τ
(ns)
12 Bit
tAQ
(ns)
0.55
1.3
5.0
5.5
7.0
12.5
16.0
18.0
20.0
33.0
38.0
50.0
75.0
80.0
80.0
80.0
0.14
0.33
1.25
1.38
1.75
3.13
4.00
4.50
5.00
8.25
9.50
12.50
18.75
20.00
20.00
20.00
1,157
490
127
116
91
51
40
35
32
19
17
13
8
8
8
8
5,672
2,400
624
567
446
250
195
173
156
95
82
62
42
39
39
39
16 Bit
tAQ
(ns)
8,881
3,757
977
888
698
391
305
271
244
148
129
98
65
61
61
61
Not Good Design Guideline
f C  f ZX
or
GZX  0dB
Stability
Problem
After selecting ADC and OpAmp
•
•
•
Determine CF
20 CSH  CF  60 CSH
Calculate RF
1
RF 
2  CF  f ZX
Verify value RF
RO
RF 
9
1

2  ( RF  RO )  CF
•
Calculate frequency of added pole
f PX
•
Keep added pole and zero
less then decade a part
f PX  101 f ZX
Design by Example
For ADS8326 we have tAQ=750ns, CSH=48pF and N=16.
k  ( N  1)  ln(2)  (16  1)  ln(2)  11.78
1

f ZX
2
3
4
t AQ
750ns
 63.65ns
k
11.78
1
1


 2.5MHz
2  2  63.65ns

GBW  4  f ZX  4  2.5MHz  10MHz
20 CSH  CF  60 CSH  20 48 pF  CF  60 48 pF 
960pF  CF  2.9nF  CF  1.2nF
1
1
RF 

 53
2  CF  f ZX 2 1.2nF  2.5MHz
ADC and DAC Functions
ADC :
VIN
CODE
N
2
CODE  VIN 
VREF
VREF
CODE
VOUT
DAC :
VOUT
VREF
VREF
 CODE  N
2
Noise and ENOB of ADC
Signal-to-Noise Ratio and Distortion
 SNR
10
SINAD(dB)  20log 10
 10
Effective Number of Bits
ENOB 
SINAD  1.76dB
6.02
ENOB  f (SNR, THD)
THD
10
Noise Sources in SAR ADCs
•
•
•
•
•
•
Wideband ADC internal circuits noise
Noise due to aperture jitter
Quantization noise
Transition or DNL noise
Analog input buffer circuit noise
Reference input voltage noise
Measuring Reference Input Noise
REF5040
VIN ≈ 0V
or
VIN ≈ FSR
REFIN
CS
-
VOUT
ADS8326
+
CLK
SDO
Noise Contribution
50
ADC + REF Noise
45
40
REF Noise
Noise [uVrms]
35
30
25
20
ADC Internal Noise
15
10
5
0
0
0.5
1
1.5
2
2.5
Input Voltage [V]
3
3.5
4
4.5
Quantization of Reference Noise
• Low noise analog input of 0.09V
– Source of noise is ADC’s internal noise.
– Measured noise is 27µVRMS or 179µVPP
• Low noise analog input of 4.02V
– Source of noise is ADC’s internal noise
and reference input noise.
– Measured noise is 43µVRMS or 287µVPP
Sources of the Noise in REF50xx
1.2V
VOUT
+
+
Noise Source
RMS
Low Pass Filter Shapes the
Output Noise Spectrum
1/f Region
Source: Art Kay; OpAmp Noise 2006
Broadband Region
Low pass filter
REF50xx Noise Test Circuit
Variable
+5V
CIN
10F
NC
1
8
NC
VIN
2
7
NC
TEMP
3
6
VOUT
GND
4
5
TRIM
REF5040
+4.096V
COUT
1F - 50F
Capacitor Equivalent Circuit
ESL
ESR
IR
C
ESR
ESL
IR
C
Capacitance
Equivalent Series Resistance
Equivalent Series Inductance
Insulation Resistance
Capacitive Load with ESR
VCC
1
fP 
2  ( RO  ESR)  CL
++-
RO
ESR
CL
1
fZ 
2  ESR CL
Measured Noise for different BW
and LP Filters
Measurement Bandwith
30kHz
80kHz
LP-3P
LP-3P
Noise
22kHz
LP-5P
>500kHz
Units
GND
1µF
0.8
1
1.8
4.9
µVRMS
37.8
41.7
53.7
9,017
µVRMS
2.2µF (cer)
41.7
46.2
55.1
60.8
µVRMS
10µF
33.4
33.4
35.2
38.5
µVRMS
10µF (cer)
37.1
37.2
37.8
39.1
µVRMS
20µF (cer)
33.1
33.1
33.2
34.5
µVRMS
47µF
23.2
23.8
24.1
26.5
µVRMS
The capacitor on the output of REF50xx together with
internal components will create Low Pass filters.
Filtering Internal Bandgap
Reference
1.2V
10k
VOUT
+
+
TRIM
1k
Measured Noise with Added
Bandgap Filter
Noise
22kHz
LP-5P
Measurement Bandwith
30kHz
80kHz
LP-3P
LP-3P
>500kHz
Units
GND
2.2µF (cer)
0.8
1
1.8
4.6
µVRMS
42.5
47.2
61.2
68.3
µVRMS
2.2µF+1µF
17.5
19.4
22.6
24.5
µVRMS
10µF
34.4
35.6
37.7
44.5
µVRMS
10µF+1µF
14.1
14.4
14.9
16.4
µVRMS
20µF (cer)
34.8
34.9
35.1
35.2
µVRMS
20µF+1µF
14.4
14.4
14.7
15.1
µVRMS
Adding 1µF capacitor on the TRIM pin will reduce noise ~2.5x
REF5040 Output with 10μF and
<10mΩ ESR Capacitor
BW=80kHz noise=16.5μVRMS
BW=65kHz noise=138μVPP
Added RC filter on the Output
5V
1.2V
10k
+
+
ESR
REF5040
10uF
10uF
Adding RC filter reduce noise from xx to xx
REF5040 Output with added RC Filter
BW=80kHz noise=2.2μVRMS
BW=65kHz noise=15μVPP
SAR ADC Capacitive Conversion
Network
Comparator
ADS83xx
+
Capacitive Conversion Network
C
VIN+
S0
C
C/21
C/22
C/23
C/2N
S1
S2
S3
SN
C/2N
VREF
Scaling
REF Input With Proper Buffer
Start Conversion
End Conversion
REF Input With Wrong Buffer
Start Conversion
End Conversion
Voltage-reference circuit with added
buffer and output filter
5V
OPA350
5V
1.2V
10k
+
ESR
+
+
ESR
10uF
10uF
REF5040
10uF
BW=80kHz noise=4.5μVRMS
BW=65kHz noise=42μVPP
Design by Example
1. Use REF5040 and 10μF with 0.5Ω<ESR<1.5Ω
(Vn=39μVRMS/261μVPP)
2. Add 1μF on the TRIM pin
(Vn=16μVRMS/138μVPP)
3. Use additional RC Filter (10kΩ/10μF)
(Vn=2.2μVRMS/15μVPP)
4. Buffer output with OPA350 and 10μF with
0.2Ω<ESR (Vn=4.5μVRMS/42μVPP)
References
1) Green, Tim, “Operational Amplifier Stability, Part 6 of 15:
Capacitance-Load Stability: RISO, High Gain & CF, Noise Gain,”
Analog Zone, 2005.
2) Miro Oljaca, and Baker Bonnie, “Start with the right op amp
when driving SAR ADCs,” EDN, October 16, 2008,
3) Downs, Rick, and Miro Oljaca, “Designing SAR ADC Drive
Circuitry, Part I: A Detailed Look at SAR ADC Operation,”
Analog Zone, 2005.
4) Downs, Rick, and Miro Oljaca, “Designing SAR ADC Drive
Circuitry, Part II: Input Behavior of SAR ADCs,” Analog Zone,
2005.
5) Downs, Rick, and Miro Oljaca, “Designing SAR ADC Drive
Circuitry, Part III: Designing The Optimal Input Drive Circuit For
SAR ADCs,” Analog Zone, 2007.
6) Baker, Bonnie, and Miro Oljaca, “External components improve
SAR-ADC accuracy,” EDN, June 7, 2007,
7) Miroslav Oljaca, “Understand the Limits of Your ADC Input
Circuit Before Starting Conversions,” Analog Zone, 2004.
References Cont.
8) Art Kay, “Analysis and Measurement of Intrinsic Noise in Op
Amp Circuits Part 1 to 8”, Analog Zone / En-Genius, 2006-2008
9) Oljaca, M., Klein, W., “Converter voltage reference
performance improvement secrets”, Instrumentation &
Measurement Magazine, IEEE, Volume: 12 Issue: 5 October
2009, Page(s): 21-27,
10) Bonnie Baker, and Miro Oljaca, "How the voltage reference
affects ADC performance, Part 3 of 3", Analog Applications
Journal, Texas Instruments, Q4Y09, 2009
11) Miro Oljaca, and Bonnie Baker, "How the Voltage Reference
Affects your Performance: Part 2 of 3", Analog Applications
Journal, Texas Instruments, Q3Y09, July 2009
12) Bonnie Baker, and Miro Oljaca, “How the Voltage-reference
affects Your Performance: Part 1 of 3”,, Analog Applications
Journal, Texas Instruments, Q2Y09, 2009
13) Miro Oljaca, “Converter Voltage Reference Performance
Improvement Secrets” Embedded Systems Conference,
Silicon Valley, 2008
Questions?
Thanks for Your Interest
in
From Analog to Digital:
Design In a Few Simple Steps
Miro Oljaca
Senior Applications Engineer
Texas Instruments Inc
Tucson, Arizona USA
[email protected]