Superfluid BEC dynamics in peridioc potentials

Download Report

Transcript Superfluid BEC dynamics in peridioc potentials

Superfluid dynamics of BEC in a periodic potential Augusto Smerzi

INFM-BEC & Department of Physics, Trento LANL, Theoretical Division, Los Alamos

Collaboration with:

Chiara Menotti INFM-BEC & Department of Physics, Universita` di Trento Andrea Trombettoni INFM & Department of physics, Universita` di Parma

BEC trapped in a periodic potential

i

   (

r

 ,

t

) 

t

     2 2

m

 2 

V ext

(

r

 ) 

g

0  2      The trapping

Lattice field Driving field

interatomi c interactio n

V L

(s (

r

  )

V D g

V

0 sin ( 0

r

 )   4 

m

2 

m r

2

a

2 (

k x

2

x

) 

m

 2 2

a r

 (

y

2 0 

z

) ion) repulsive

a

 0 attractive

BEC expanding in a 1D optical lattice No interaction --> a = 0

Density profile Trapping potential Momentum distribution

d

q B  intersite  Bragg spacing momentum

BEC expanding in a 1D optical lattice A. Trombettoni and A. Smerzi, PRL 86, 2353 (2000)  

a N

0

BEC expanding in a 1D optical lattice Interacting atoms --> a > 0

Density profile Trapping potential Momentum distribution

Preliminary experimental evidences of self-trapping B. Eiermann, M. Albiez, M. Taglieber, M. Oberthaler University of Konstanz

BEC expanding in a 1D optical lattice Interacting atoms --> a > 0 Array of

weakly coupled

BEC Dynamical 

n

(

t

) 

N n

variables (

t

)

e i

n

(

t

) Tunneling

k

 

n

(

x

) rate 

T

V

 

n

 1 (

x

)

Josephson oscillations

1. Atoms are condensed in the optical and magnetic fields. 2. The harmonic confinement is instantaneously shifted along the x direction.

N

 10 5

Rd atoms

x

r

  2 2  

V

0

d

  5 0 .

5

E R

 10 100

m Hz Hz

Array of Josephson junctions driven by a harmonic external field

Josephson oscillations

center relative of mass phases position

:

p

 : 

n

 1    

n

n n N n

d dt

 (

t

)  

d dt

2

K

sin

p

(

t

)

p

(

t

)  

m

x

2 (  2 ) 2  (

t

) Oscillations of the three peaks of the interferogram. Blue circles: no periodic potential The array is governed by a pendulum equation F.S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, M. Inguscio, Science 293, 843 (2001)

Small amplitude pendulum oscillations

Jos

 

x d

 2

m K

Triangles: GPE; stars: variational calculation of K Circles: experimental results Relation between the oscillation frequency and the tunneling rate

Breakdown of Josephson oscillations

The interwell phase coherence breaks down for a large initial displacement of the BEC center of mass

Questions:

1) Why the interaction can break the inter-well phase coherence of a condensate at rest confined in a periodic potential ?

2) Why a large velocity of the BEC center of mass can break the inter-well phase coherence of a condensate confined in a periodic potential and driven by a harmonic field ?

Which are the transport properties of BEC in periodic potentials ?

The discrete nonlinear equation (DNL)

i

  

k

   

t

n

 ( 

n

V D n

2     ( 

n

 1 2

n

 ) * 

n

  1

n

  1  

n

 

k

*

n

 1   

c

.

c

.)   (  2

n

n

 

U n

 1 2 ) 

n

  

n

 1 

n

 Tunneling Dynamical

and

on the depends variables interactio on n the 

k n

( 

t

)  

n

(

x

) 

T n

( 

t V

) 

e i

n n

 1 ( (

t x

) ) height   

g

0  3

n

(

x

) 

n

 1 (

x

) 

a

of the interwell barriers

Newtonian Dynamics of a wave-packet 

n

(

t

) 

C f



n

  (

t

) (

t

)   exp  

ip

[

n

  (

t

)] 

i

 (

t

) [

n

2   (

t

)] 2   The collective satisfy coordinate s

ξ(t), p(t),σ(t), δ(t)

variationa l Euler  Lagrange equations

v g

   

m E

 1   

V D

  (  ) sin

p m E

 1  

n

1

m E

 (

n N

n n

) 2 

n

2

Bloch energies & effective masses 

n

(

t

) 

N

0

e i

(

p n

 

t

) are eigenstate s of the DNL

E

  

E loc

 

loc

 1

m

N

0 cos

m E

1 cos

p p

Effective masses depend on the height of the inter-well barriers and on the density

m

 1  (

N

0 ,

V

0 )   2   2

p

2

p

 0 

m E

 1 (

N

0 ,

V

0 )  1

N

0  2

E

 2

p

2

p

 0 In the limit

V

0  0 ,

m

 

m E

m

See also M. Kramer, C. Menotti, L. Pitaevskii and S. Stringari, unpublished

Bogoliubov spectrum

n

(

t

) 

N

0

e i

(

p n

 

t

)  

n

(

t

) 

n

(

t

)  

q u q e i

q t e i

[(

p

q

)

n

 

t

] , 

N

0  1 p  quasi  momentum q  quasi  momentum of the large amplitude traveling of the perturbati on mode wave 1. Replace in the DNL 2. After linearization, retrieve the dispersion relation    (

p

,

q

,

N

0 )

Bogoliubov spectrum

B

 sin

m

p

sin

q

 2 cos

m

2  2

p

sin 4

q

2  cos

p m E

  

N

0

N

0 sin 2

q

2 

O

       

m

 1  

m

 1 

m E

 1     2     Free limit 

B

(periodic potential

OFF

) 

p m q

 1

m

2

q

4 4  1

m

  

N

0

N

0

q

2

Sound-wave & energetic instability

sound velocity v s

,     

q B

(

q

 0 ) 

m E m

v g

c c

 1

m E

  

N

0

N

0 cos

p v g

 sin

m E p Energetic instabilit y

 

B

 0

c

2 

m E

2

m

2 

v g

2 Landau criteria in free space : for breakdown of superfluid

c

2 

v g

2 ity Cfr. with B. Wu and Q. Niu, PRA64, 061603R (2001)

Dynamical instability

The system becomes modulation ally unstable when

ω B becomes complex c

2  1

m E

  

N

0

N

0 cos

p

 0 In ω B the  v free g q (V   1 m 2 0) q limit 4  1 the m   Bogoliubov μ N 0 N 0 q 2 spectrum is always real (when a No dynamical instabilities   (  1

q

,

p

)  2 sin

q m

1 2  cos 2

p

sin 2

q

2 

m

1

E

  

N

0

N

0 cos

p

0) in a periodic potential

Comparison between analytical and numerical dispersion relation

p

 1 4  Full line: analytical (DNL) Dots: numerical (GPE)

p

 3 4  Dashed line :

m

 

m E

Breakdown of superfluidity for a BEC driven by a harmonic field Density at t=0,20,40 ms as a function of the Quasi-momentum vs. time for three different initial displacements: 40, 80, 90 sites Position. Initial displacements: 50, 120 sites

v g

     

m E

 1 

V D

  (  ) sin

p The system critical becomes group dynamicall y velocity v g

A. Smerzi, A. Trombettoni, P.G. Kevrekidis, A.R. Bishop, PRL 89, 170402 (2002) 

m

 1

unstable at the

The Frontier

• • • • •

Technological applications

Interferometry at the Heisenberg limit Quantum information

Foundational problems

Quantum – classical correspondence principle Schroedinger cats, entanglement

Tools

Quantum many-body dynamical theory