Presentazione di PowerPoint

Download Report

Transcript Presentazione di PowerPoint

QUANTUM DEGENERATE
BOSE SYSTEMS
IN LOW DIMENSIONS
G. Astrakharchik
S. Giorgini
Trento, 14 March 2003
Istituto Nazionale per la Fisica della Materia
Research and Development Center on
Bose-Einstein Condensation
Dipartimento di Fisica – Università di Trento
Bose – Einstein condensates of alkali atoms
• dilute systems na3<<1
• 3D mean-field theory works
• low-D role of fluctuations is enhanced
• 2D thermal fluctuations
• 1D quantum fluctuations
beyond mean-field effects
many-body correlations
Summary
•
General overview
Homogeneous systems
Systems in harmonic traps
•
Beyond mean-field effects in 1D
•
Future perspectives
BEC in low-D: homogeneous systems
Textbook exercise: Non-interacting Bose gas in a box
• Thermodynamic limit
N 
V 
N
n
V
fixed density
• Normalization condition
D
d k
N  N0  
n
D k
(2 )
momentum
distribution
d Dk
1
N  N0  
D (  2 k 2 / 2 m   ) / k BT
(2 ) e
1
T  T3 D
2 2  n 



k B m  2.61
D=3
if
D2
for any T >0
If =0
0
chemical
potential
2/3
 0
 0
N0  0
N0  0
infrared divergence in nk
k BT
nk k
 2 2
0
 k / 2m
D=3 converges
D2 diverges
Interacting case
T0
If
Hohenberg theorem (1967)
“per absurdum argumentatio”
Bogoliubov 1/k2 theorem
N0
n0 
0
N
1 2mk BT
nk   2 2 n0
2
 k
Rules out BEC in 2D and 1D at finite temperature
Thermal fluctuations destroy BEC in 2D and 1D
quantum fluctuations?
T=0
Uncertainty principle
fluctuations of
particle operator
If
But
n0 
N0
0
N
S (k ) 
k
2mc
(Stringari-Pitaevskii 1991)
fluctuations of
density operator
n0
1
nk  
2 S (k )
static structure factor
sum rules result
1 2mc
nk  
n0
2 k
Rules out BEC in 1D systems even at T=0
Quantum fluctuations destroy BEC in 1D
(Gavoret – Nozieres 1964 ---- Reatto – Chester 1967)
Are 2D and 1D Bose systems trivial as they
enter the quantum degenerate regime ?
T  n
T  2 2 / mk BT
1 / D
Thermal wave-length
One-body density matrix :
central quantity to investigate the coherence properties of the system
d Dk
ik s

 ( s)  
n
e


ˆ
( s )ˆ (0)
D k
(2 )
1.0
0.8
 ( s ) s


N0
V
long-range order
(r)/
condensate density
0.6
0.4
0.2
0.0
0
2
4
6
8
r (angstrom)
liquid 4He at equilibrium density
2D
low-T
from hydrodynamic theory (Kane – Kadanoff 1967)
 (T )
 ( s ) s   1 / s
high-T
k BTm
 (T ) 
2 2 n
classical gas
 (s) s  e
s 2 / T2
Something happens at intermediate temperatures
Berezinskii-Kosterlitz-Thouless transition temperature TBKT
(Berezinskii 1971 --- Kosterlitz – Thouless 1972)
T<TBKT
system is superfluid
T>TBKT
system is normal
Thermally excited vortices destroy superfluidity
Defect-mediated phase transition
• Universal jump (Nelson – Kosterlitz 1977)

 s (TBKT
)
TBKT
2m 2 k B

 2
• Dilute gas in 2D: Monte Carlo calculation (Prokof’ev et al. 2001)
TBKT
1
2 2 n


log( 2 / mg 2 D )   380
mk B
Torsional oscillator experiment on 2D 4He films
(Bishop – Reppy 1978)
Dynamic theory by
Ambegaokar et al. 1980
1D
From hydrodynamic theory (Reatto – Chester 1967)

 ( s ) s   1 / s
T=0
T 0
 ( s ) s   e  s / r ( T )
0
mc

2n
2 n 2
r0 (T ) 
k BTm
k BT   2 n 2 / m degeneracy temperature in 1D
4He
adsorbed in carbon nanotubes
Cylindrical graphitic tubes:
Yano et al. 1998
Teizer et al. 1999
1 nm diameter
103 nm long
superfluid behavior
1D behavior of binding energy
BEC in low-D: trapped systems
z


m2 2 m z2 2
Vext (r ) 
r 
z
2
2
anisotropy
parameter
a)
•) kBT  z
kBT  
E / N  z / 2  z
•) kBT  
motion is frozen along z
kinematically the gas is 2D
kBT  z
E / N    
z
2 1/ 2
 az   / m z
motion is frozen in the x,y plane
kinematically the gas is 1D
2 1/ 2

r
 a   / m
Goerlitz et al. 2001
3D 2D
3D 1D
b)
Finite size of the system
R , Rz
cut-off for long-range fluctuations
BEC in 2D
fluctuations are strongly quenched
(Bagnato – Kleppner 1991)
k BT2 D   (N / 1.64)1/ 2
k BT3 D   (N / 1.20)1/ 3
  (2 z )1/ 3
Thermodynamic limit
N 
  0
 N 1/ 2 fixed
But density of thermal atoms
n(r )   log(1  e
2
T
 m2 r2 / 2 k BT
Perturbation expansion in terms of g2D n breaks down
Evidence of 2D behavior in Tc
(Burger et al. 2002)
• BKT-type transition ?
• Crossover from standard BEC to BKT ?
) r
 
 0
1D systems
• No BEC in the thermodynamic limit N
• For finite N macroscopic occupation of lowest single-particle state
kBT1D  z N / log(2N )
If
k BT3 D    k BT1D
2-step condensation
(Ketterle – van Druten 1996)
Effects of interaction (Petrov - Holzmann – Shlyapnikov 2000)
(Petrov – Shlyapnikov – Walraven 2000)
Characteristic radius of phase fluctuations
2D
1D
R  T eT / T
k BT  N ( ) 2 / 
R  Rz (T / T )
k BT  N ( z ) 2 / 
T  T
 R  R

 R  Rz
2D
T  T
 R  R

 R  Rz
2D
1D
1D
true condensate
(quasi-condensate)
condensate with
fluctuating phase
Dettmer et al. 2001
Richard et al. 2003
Beyond mean-field effects in 1D at T=0
• Lieb-Liniger Hamiltonian
Exactly solvable model with repulsive zero-range force
H LL
2 N 2

 g1D   ( zi  z j )

2
2m i 1 zi
i j
Girardeau 1960 --- Lieb – Liniger 1963 --- Yang – Yang 1969
g1D
2 2

0
m a1D
at T=0 one parameter n|a1D|
a1D scattering length
Equation of state
10
3
10
2
10
1
10
0
-1
10
-2
10
-3
1x10
-4
1x10
-5
10
-6
E/N
10
MF
TG
10
-3
-2
10
10
-1
10
0
10
1
10
2
10
3
n|a1D|
n a1D  1
E / N  g1D n / 2
n a1D  1
 2 2 n 2
E/N 
6m
mean-field
Tonks-Girardeau
fermionization
One-body density matrix
Quantum Monte-Carlo (Astrakharchik – Giorgini 2002)
z     / 2mc
10
1
 ( z )  1 / z
30
(z)/
1 / 2 TG
 

2n  0 MF
mc
1
0.3
10
k  1 / 
nk  1 / k
1
-3
0.1
0.1
1
10
zn
100
3
Momentum distribution
0.8
0.6
k n(k)/n
10
-3
0.3
0.4
1
0.2
30
10
0.0
-3
10
10
-2
3
10
-1
k/n
10
0
10
1
Lieb-Liniger + harmonic confinement
N
2 N 2
mωz2 2
H 
 g1D   ( zi  z j )  
zi

2
2m i 1 zi
2
i j
i 1
Exactly solvable in the TG regime (Girardeau - Wright - Triscari 2001)
Local density approximation (LDA) (Dunjko - Lorent - Olshanii 2001)
If
E / N  z
m z2 2
  local n( z ) 
z
2
1D behavior is assumed from the beginning
3D-1D crossover
Quantum Monte-Carlo (Blume 2002 --- Astrakharchik – Giorgini 2002)
N
2 N 2
H 
 i  V ( ri  r j )  Vext (ri )

2m i 1
i j
i 1
Harmonic confinement
highly anistropic traps
z

 1

m
Vext (r )  2 r2   z2 z 2 
2
Interatomic potential (a s-wave scattering length)
hard-sphere model
 
V (r )  
0
(r  a)
(r  a)
soft-sphere model (R=5a)
V0  0 (r  R)
V (r )  
(r  R)
0
Compare DMC results with
• Mean-field – Gross-Pitaevskii equation
 2 2
2
  Vext (r )  g 3 D  N  1 (r ) (r )  (r )

 2m

with
g3D
4 2 a

m
• 1D Lieb-Liniger
with
(Olshanii 1998)
g1D
2 2 a

ma2
a1D
a2

a
10
0
TG
-1
E/N  
()
10
GP
10
-2
LL+LDA
10
-3
IG
10
-4
10
-3
10
-2
=z/
N=5
10
-1
a/a=0.2
10
0
E/N  
()
10
0
TG
GP
10
-1
10
-2
IG
LL+LDA
10
-3
N=5 a/a=1
10
-4
10
-3
10
-2
=z/
10
-1
10
0
E/N  
()
N=100
a/a=0.2
GP
0
10
TG
IG
10
-1
LL+LDA
10
-3
10
-2
-1
10
=z/
0
10
Possible experimental evidences of TG regime
• size of the cloud (Dunjko-Lorent-Olshanii 2001)
z
2
 az
N
2
1/3
TG
z
2
az 
a

 3 N 
5 
a 
• collective compressional mode (Menotti-Stringari 2002)
  2z TG
  3 z
MF
• momentum distribution (Bragg scattering – TOF)
nk 
1
k
TG
1
nk 
k
MF
MF
Infrared behavior k<<1/ --- Finite-size cutoff k>>1/Rz
a / a  0.2
1
12
10
  103
n(k)/N
8
0
N=100
10
n(k)/N
10
-1
10
6
-2
10
4
N=20
1/
1/Rz
-1
0
10
N=5
2
0
0.0
1
10
10
k (1/az)
0.5
1.0
k
(1/az)
1.5
2.0
Future perspectives
• Low-D and optical lattices
– many-body correlations
 superfluid – Mott insulator quantum phase transition
(in 3D Greiner et al. 2002)
– Thermal and quantum fluctuations
 low-D effects
Investigate coherence and superfluid properties
• Tight confinement and Feshbach resonances
(Astrakharchik-Blume-Giorgini)
Quasi-1D system
a  a
a  1 / n
confinement induced resonance (Olshanii 1998 - Bergeman et al. 2003)
g1D
2 2 a
1

ma2 1  1.03a / a