Lecture Notes EEE 360 - Warsaw University of Technology

Download Report

Transcript Lecture Notes EEE 360 - Warsaw University of Technology

EEE 360
Energy Conversion and
Transport
George G. Karady & Keith Holbert
Chapter 7
Induction Motors
7/17/2015
360 Chapter 7 Induction Motor
1
Lecture 19
7/17/2015
360 Chapter 7 Induction Motor
2
Induction Motors
Operation Principle
•
•
•
•
The three-phase stator is supplied by balanced threephase voltage that drives an ac magnetizing current
through each phase winding.
The magnetizing current in each phase generates a
pulsating ac flux.
The total flux in the machine is the sum of the three
fluxes.
The summation of the three ac fluxes results in a
rotating flux, which turns with constant speed and
has constant amplitude.
7/17/2015
360 Chapter 7 Induction Motor
3
Induction Motors
Operation Principle
•
The rotating flux induces a voltage in the shortcircuited bars of the rotor. This voltage drives
current through the bars.
•
The induced voltage is proportional with the
difference of motor and synchronous speed.
Consequently the motor speed is less than the
synchronous speed
•
The interaction of the rotating flux and the rotor
current generates a force that drives the motor.
7/17/2015
360 Chapter 7 Induction Motor
4
7.3.2 Equivalent circuit
7/17/2015
360 Chapter 7 Induction Motor
5
Induction Motors
Xsta
Vsup
Rsta
Ista
Xrot_t
Rc
Xm
Vsta
Rrot_t
Irot_t
Stator
Rrot_t(1-s)/s
Rotor
Air gap
Figure 7.20 Final single-phase equivalent circuit of a three-phase
induction motor.
7/17/2015
360 Chapter 7 Induction Motor
6
7.3.3 Motor performance
7/17/2015
360 Chapter 7 Induction Motor
7
Induction Motors
• Figure 7.21 shows the energy balance in a motor.
• The supply power is:

Psup  Re(Ssup )  Re 3 Vsup I
*
sta

• The power transferred through the air gap by the
magnetic coupling is the input power (Psup) minus the
stator copper loss and the magnetizing (stator iron)
loss.
•
The electrically developed power (Pdv) is the difference
between the air gap power (Pag) and rotor copper loss.
7/17/2015
360 Chapter 7 Induction Motor
8
Induction Motors
• The electrically developed power can be computed
from the power dissipated in the second term of rotor
resistance:
Pdv  3 I rot_t
2
1 s 

 Rrot _ t

s 

• The subtraction of the mechanical ventilation and
friction losses (Pmloss) from the developed power gives
the mechanical output power
Pout  Pdv  Pmloss
7/17/2015
360 Chapter 7 Induction Motor
9
Induction Motors
• The motor efficiency:
Pout

Psup
• Motor torque:
T
7/17/2015
Pout
m
360 Chapter 7 Induction Motor
10
Induction Motors
Air gap
Input power
Psup
Air gap
power Pag
Developed power
Pdv = 3 Irot2 Rrot (1-s)/s
Output power
Pout
Ventilation and
loss friction losses
Stator Iron loss Rotor Copper
3 Irot2 Rrot
3 Vsta2 / Rc
Stator Copper loss
3 Ista2 Rsta
Figure 7.21
7/17/2015
Motor energy balance flow diagram.
360 Chapter 7 Induction Motor
11
7.3.4 Motor performance
analysis
7/17/2015
360 Chapter 7 Induction Motor
12
Induction Motors
1) Motor impedance
( 1  s)
Zrot_t( s)  j Xrot_t  Rrot_t  Rrot_t
s
Zsta
Zrot_t(s)
j  Xm  Rc
Zm 
j  Xm  Rc
Zm  Zrot_t( s )
Zmot ( s )  Zsta 
Zm  Zrot_t( s )
Vsup
Ista
Im
Zm
Irot_t
Figure 7.22 Simplified motor
equivalent circuit.
7/17/2015
360 Chapter 7 Induction Motor
13
Induction Motors
1) Motor impedance
( 1  s)
Zrot_t( s)  j Xrot_t  Rrot_t  Rrot_t
s
j  Xm  Rc
Zm 
j  Xm  Rc
Zsta
Zrot_t(s)
Zsta  j Xsta  Rsta
Ista
Irot_t
Vsup
Zm  Zrot_t( s )
Zmot ( s )  Zsta 
Zm  Zrot_t( s )
7/17/2015
Im
Zm
Figure 7.22 Simplified motor
equivalent circuit.
360 Chapter 7 Induction Motor
14
Induction Motors
2) Motor Current
Zsta
Vsup 
Vmot
Vsup  254.034V
3
Vsup
Vsup
Ista( s ) 
Zmot ( s )
Zm
Irot_t( s )  Ista( s ) 
Zm  Zrot_t( s )
7/17/2015
Zrot_t(s)
Ista
Im
Zm
Irot_t
Figure 7.22 Simplified motor
equivalent circuit.
360 Chapter 7 Induction Motor
15
Induction Motors
3) Motor Input Power

Ssup( s)  3  VsupIsta( s)
Psup( s )  Re Ssup( s )


Psup( s )
Qsup( s )  Im Ssup( s )
Pfsup( s ) 
Ssup( s )
4)


Motor Output Power and efficiency

Pdev( s)  3  Irot_t( s)

2
Rrot_t
( 1  s)
s
Pmech ( s )  Pdev( s)  Pmech_loss
7/17/2015
360 Chapter 7 Induction Motor
 ( s ) 
Pmech ( s )
Psup( s )
16
Induction Motors
s  0.1  %  0.2%  100  %
40
Pmax
Pmech( s )
30
hp
Pmotor
20
hp
10
Operating Point
0
0
20
smax
40
60
80
100
s
%
Figure 7.24 Mechanical output power versus slip.
7/17/2015
360 Chapter 7 Induction Motor
17
Induction Motors
5. Motor Speed
rpm 
1
min
f
nsy 
p
nsy  1800rpm
2
nm ( s)  nsy ( 1  s)
m( s)  2 nm( s)
6. Motor Torque
Tm ( s ) 
7/17/2015
Pmech ( s )
m ( s )
360 Chapter 7 Induction Motor
18
Induction Motors
s  0.5%  0.6%  80%
2 00
1 50
Tm( s )
N m
1 00
50
0
0
20
40
60
80
s
%
Figure 7.26 Torque versus slip.
7/17/2015
360 Chapter 7 Induction Motor
19
Induction Motors
s  0.5%  0.6%  80%
200
175
Tmax
Tm( s ) 150
N m
Trated
N m
125
100
75
50
Operating Point
25
0
200
400
600
800
1000
1200
1400
n m( s )
rpm
1600
1800
nmax
Figure 7.26 Torque versus speed.
7/17/2015
360 Chapter 7 Induction Motor
20
Induction Motors
7.3.4.5.Motor Starting torque
• When the motor starts at s = 1,
• The ventilation losses are zero and the friction
loss is passive. The negative friction loss does not
drive the motor backwards.
• The mechanical losses are zero when s = 1
• This implies that the starting torque is calculated
from the developed power instead of the
mechanical output power.
7/17/2015
360 Chapter 7 Induction Motor
21
Induction Motors
7.3.4.5. Motor Starting torque
Tm_start ( s) 
Tm_start ( s ) 
7/17/2015

3  Irot_t( s)

2
( 1  s)
Rrot_t
s
2 nsy ( 1  s)

3  Irot_t( s )

2
Rrot_t

s
2  nsy
360 Chapter 7 Induction Motor
22
Induction Motors
• The resistances and reactance in the equivalent
circuit for an induction motor can be
determined by a series of measurements. The
measurements are:
– No-load test. This test determines the magnetizing
reactance and core loss resistance.
– Blocked-rotor test. This test gives the combined
value of the stator and rotor resistance and
reactance.
– Stator resistance measurement.
7/17/2015
360 Chapter 7 Induction Motor
23
Induction Motors
7.3.6.1.No-load test
• The motor shaft is free
• The rated voltage supplies the motor.
• In the case of a three-phase motor:
– the line-to-line voltages,
– line currents
– three-phase power using two wattmeters are
measured
7/17/2015
360 Chapter 7 Induction Motor
24
Induction Motors
7.3.6.1. No-load test
Xsta
Fig 7.29 Equivalent
motor circuit in noload test
Rsta
Ino_load
Vno_load
Rc
Xrot_t
Xm
Rrot_t
Irot_t= small
Vsta
Rrot_t(1-s)/s
s~0
Stator
Rotor
Air gap
Fig. 7.30 Simplified
equivalent motor
circuit in no-load test
7/17/2015
Ino_load
Vno_load_ln
360 Chapter 7 Induction Motor
Rc
Xm
25
Induction Motors
7.3.6.1.No-load test
2
Vno_load_ln
Pno_load_A
Vno_load_ln
RV

c no_load_ln
 120.089V
Pno_load_A
Vno_load
3
SPno_load_A
Vno_load_lnIno_load
no_load_A 95W
Pno_load
Qno_load_A
3
2
2
Sno_load_A  Pno_load_A
2
Vno_load_ln
Xm 
Qno_load_A
7/17/2015
360 Chapter 7 Induction Motor
26
Induction Motors
7.3.6.2. Blocked-rotor test
• The rotor is blocked to prevent rotation
• The supply voltage is reduced until the motor current is
around the rated value.
• The motor is supplied by reduced voltage and reduced
frequency. The supply frequency is typically 15 Hz.
• In the case of a three-phase motor:
– the line-to-line voltages,
– line currents
– three-phase power using two wattmeters are measured
7/17/2015
360 Chapter 7 Induction Motor
27
Induction Motors
7.3.6.2. Blocked-Rotor test
Xsta
Figure 7.31 Equivalent
motor circuit for
blocked-rotor test
Vblocked
f = 15 Hz
Rsta
Iblocked
Rc
Xrot_t
Xm
Rrot_t
Irot_t
Vsta
Stator
Rotor
Air gap
Re = Rsta + Rrot_t
Figure 7.32 Simplified
equivalent motor circuit
for blocked-rotor test
Vblocked_ln
Xe = Xsta + Xrot_t
Iblocked
f = 15 Hz
7/17/2015
360 Chapter 7 Induction Motor
28
Induction Motors
7.3.6.2. Blocked-Rotor test
Vblocked_ln
Pblocked_A 
Vblocked
Vblocked_ln
 21.939 V
Pblocked_A
3
Re 
2
Iblocked
Pblocked
Pblocked_A  160W
3
The stator resistance was measured directly
Rrot_t  Re  Rsta
7/17/2015
360 Chapter 7 Induction Motor
29
Induction Motors
7.3.6.2. Blocked-Rotor test
The magnitude of the
motor impedance
The leakage reactance
at 15 Hz
The leakage reactance
at 60 Hz
7/17/2015
Vblocked_ln
Zblocked 
Iblocked
Xe_15Hz 
2
2
Zblocked  Re
60Hz
Xe  Xe_15Hz
15Hz
360 Chapter 7 Induction Motor
30
Numerical Example
7/17/2015
360 Chapter 7 Induction Motor
31
Induction Motors
A three -phase 30hp, 208V, 4 pole, 60Hz, wye connected induction
m otor was tes ted, the obtained res ults are:
N o l oad test, 60 Hz
VnL   2 08V
PnL   1 60 0W
InL   2 2A
B locked R otor test, 15Hz
Vbr   2 1V
Pbr   2 10 0W
Ibr   7 1A
D C test
Vdc   1 2V
Idc   7 5A
Mot or rat ing:
Pm ot_rated   3 0h p
p  4
Vm ot_ll   2 08V
fbr   1 5H z
p fm ot   0 .8
f   6 0H z
Calculate :
Calculate
a) The: equivalent circuit parameters
The equivalent
circuit
parameters
b)a)Motor
rated current
and
synchronous speed
b)
Motor
rated
current
and
synchronous speed
Draw the equivalent circuit
Draw the equivalent circuit
7/17/2015
360 Chapter 7 Induction Motor
32
Induction Motors
No load test , Determ ine the core los ses Rc andm agnetizing
reactance Xm
PnL_1F  
Single phas e v alues:
Rc  
VnL_ln2
YnL  
InL
VnL_ln  
3
YnL  0 .18 3S
VnL_ln
1
2
YnL 
7/17/2015
3
VnL
Rc  2 7.0 4
PnL_1F
Xm   i
PnL
 1 
R 
 c
2
Xm  5 .57 3i
360 Chapter 7 Induction Motor
33
Induction Motors
Block Rotor test ,
Neglect the m agnetizing branch. Consider only the sta
X +Xrot and
Rsta+ R rot
Xbr
Xsta  Xrot
Rbr
Single phas e v alues:
Rsta  Rrot
Pbr_1F  
Pbr
3
Vbr_ln  
Vbr
3
R es ist anc e v alue is :
Rbr  
Pbr_1F
Ibr
7/17/2015
2
Rbr  0 .13 9
360 Chapter 7 Induction Motor
34
Induction Motors
Zbr  
Vbr_ln
Zbr  0 .17 1
Ibr
2
2
Xbr_15Hz   i Zbr  Rbr
Xbr_15Hz  0 .09 9i
The react anc e at 60 H z is :
Xbr_60Hz   Xbr_15Hz
Xbr   i
60
Xbr_60Hz  0 .39 8i
15
 Z 2  R 2   6 0H z
br 
 br
f
Xbr  0 .39 8i
br
7/17/2015
360 Chapter 7 Induction Motor
35
Induction Motors
D et ermination of R 1 and R 2 and X1 and X2
Xsta  
Xbr
2
Xrot   Xsta
Xsta  0 .19 9i
Y c onnect ed mot or
Rsta  
Vdc
2Idc
Rsta  0 .08
7/17/2015
Rrot   Rbr  Rsta
Rrot  0 .05 9
360 Chapter 7 Induction Motor
36
Induction Motors
a) The equivalent circuit parameters
a) The equivalent circuit parameters
jX sta
jX rot
R sta
Ista
Irot
Vsup_ln
Rrot (1-s) / s
Im
Ic
Stator
R rot
Rc
jXm
Rotor
Air gap
7/17/2015
360 Chapter 7 Induction Motor
37
Induction Motors
C) Motor rated current and synchronous speed
Srated  
Pm ot_rated
p fm ot
Im ot_rated  
n synch  
Srated
3 Vm ot_ll

Srated  2 7.9 64k VA
1
Im ot_rated  7 7.6 2A
rpm  
n synch  3 0H z
n synch  1 80 0rpm
mi n
f
p
2
7/17/2015
360 Chapter 7 Induction Motor
38