Transcript Template
International School, Orsay June 2012 Transverse momenta of partons in high-energy scattering processes Piet Mulders 1 [email protected] Introduction • What are we after? – Structure of proton (quarks and gluons) – Use of proton as a tool • What are our means? – QCD as part of the Standard Model 2 Valence structure of hadrons: global properties of nucleons • • • • • • mass charge spin magnetic moment isospin, strangeness baryon number Quarks as constituents Mp Mn 940 MeV Qp = 1, Qn = 0 s=½ gp 5.59, gn -3.83 I = ½: (p,n) S = 0 B=1 u u d proton 3 3 colors A real look at the proton g + N …. Nucleon excitation spectrum E ~ 1/R ~ 200 MeV R ~ 1 fm 4 A (weak) look at the nucleon n p + e- + n = 900 s Axial charge GA(0) = 1.26 5 A virtual look at the proton _ g* N N g* + N N 6 Local – forward and off-forward m.e. Local operators (coordinate space densities): P ' | O( x) | P e i . x G1 (t ) - i G2 (t ) P t 2 P’ Form factors Static properties: G1 (0) P | O( x) | P G2 (0) P | x O( x) | P Examples: (axial) charge mass spin magnetic moment angular momentum 7 Nucleon densities from virtual look Gi (t ) i ( x) neutron proton • • • • charge density 0 u more central than d? role of antiquarks? n = n0 + pp- + … ? 8 Quark and gluon operators Given the QCD framework, the operators are known quarkic or gluonic currents such as (axial) vector currents Vq ( x) q ( x)g q( x) Aq ' q ( x) q ( x)g g 5 q '( x) probed in specific combinations by photons, Z- or W-bosons J (g ) 23 Vu - 13 Vd - 13 Vs ... J ( Z ) 1 2 V u - Au - 34 sin 2 W Vu ... J (W ) Vud ' - Aud ' ... energy-momentum currents Tnq ( x) ~ q ( x)g { Dn } q( x) TnG ( x) ~ G ( x)Gn ( x) probed by gravitons 9 Towards the quarks themselves • The current provides the densities but only in specific combinations, e.g. quarks minus antiquarks and only flavor weighted • No information about their correlations, (effectively) pions, or … • Can we go beyond these global observables (which correspond to local operators)? • Yes, in high energy (semi-)inclusive measurements we will have access to non-local operators! • LQCD (quarks, gluons) known! 10 Non-local probing Nonlocal forward operators (correlators): P | O x - 2y , x 2y | P P | O - 2y , 2y | P Specifically useful: ‘squares’ Selectivity at high energies: q=p O x - 2y , x y 2 † x - 2y ... x y 2 Momentum space densities of -ons: dy e ip. y | P P| † y 2 y 2 P - p | 0 | P f ( p) 2 11 A hard look at the proton Hard virtual momenta ( q2 = Q2 ~ many GeV2) can couple to (two) soft momenta g* + N jet g* jet + jet 12 Experiments! 13 QCD & Standard Model • • • QCD framework (including electroweak theory) _ provides the _ machinery to calculate cross sections, e.g. g*q q, qq g*, g* qq, qq qq, qg qg, etc. E.g. qg qg Calculations work for plane waves 0 i( s ) ( ) p, s ui ( p, s) e -ip. 14 Soft part: hadronic matrix elements • For hard scattering process involving electrons and photons the link to external particles is, indeed, the ‘one-particle wave function’ 0 i ( ) p, s ui ( p, s) e-ip. • Confinement, however, implies hadrons as ‘sources’ for quarks X i ( ) P e ip. • … and also as ‘source’ for quarks + gluons X i ( ) A ( ) P ei ( p - p1 ). ip1 . • … and also …. 15 PARTON CORRELATORS Soft part: hadronic matrix elements Thus, the nonperturbative _ input for calculating hard processes involves [instead of ui(p)uj(p)] forward matrix elements of the form d 3 PX ij ( p, P) P | j (0) | X X | i (0) | P ( P - PX - p) 3 (2p ) 2EX quark ij ( p, P) momentum 1 4 i p. d e P | j (0) i ( ) | P 4 (2p ) P | j (0) A () i ( ) | P 16 INTRODUCTION PDFs and PFFs Basic idea of PDFs is to get a full factorized description of high energy scattering processes | H ( p1, p2 ,...) |2 calculable defined (!) & portable ( P1 , P2 ,...) ...dp1... a ( p1 , P1; ) b ( p2 , P2 ; ) Give a meaning to integration variables! ab,c... ( p1 , p2 ,...; ) c (k1 , K1; ).... 17 INTRODUCTION Example: DIS 18 Principle for DIS q p u ( p, s ) u ( p, s ) s ( p, P) ~ ( p m) f ( p) P • Instead of partons use correlators • Expand parton momenta (for SIDIS take e.g. n= Ph/Ph.P) p x P pT n ~Q ~M ~ M2/Q 2 Px2pM p.n ~ 1 p.P - xM 2 ~ M 2 19 (calculation of) cross section in DIS Full calculation + + (x) LEADING (in 1/Q) x = xB = -q2/P.q + +… 20 Lightcone dominance in DIS Result for DIS q p P n n 2MW ( P, q) - gT 1 2 dx dp.P d 2 pT Tr[( p, P)g ] ( x - xB ) - 12 gTn Tr[( xB )g ] 22 Parametrization of lightcone correlator leading part • M/P+ parts appear as M/Q terms in cross section • T-reversal applies to (x) no T-odd functions Jaffe & Ji Jaffe & Ji NP B 375 (1992) 527 PRL 71 (1993) 2547 23 Basis of partons ‘Good part’ of Dirac space is 2-dimensional Interpretation of DF’s unpolarized quark distribution helicity or chirality distribution transverse spin distr. or transversity 24 Matrix representation for M = [(x)g+]T Bacchetta, Boglione, Henneman & Mulders PRL 85 (2000) 712 Quark production matrix, directly related to the helicity formalism Anselmino et al. Off-diagonal elements (RL or LR) are chiral-odd functions Chiral-odd soft parts must appear with partner in e.g. SIDIS, DY 25 Next example: SIDIS 26 (calculation of) cross section in SIDIS Full calculation + LEADING (in 1/Q) + + +… 27 Lightfront dominance in SIDIS Three external momenta P Ph q transverse directions relevant qT = q + xB P – Ph/zh or qT = -Ph^/zh Result for SIDIS q p Ph k P 2MW n ( P, Ph , q) d 2 pT d 2 kT Ph qT q xB P zh Tr[( xB , pT )g ( zh , kT )g ] 2 ( pT qT - kT ) - 12 gTn d 2 pT d 2 kT Tr[( xB , pT )g ] Tr[( zh , kT )g - ] 2 ( pT qT - kT ) 29 Parametrization of (x,pT) • Also T-odd functions are allowed • Functions h1^ (BM) and f1T^ (Sivers) nonzero! • Similar functions (of course) exist as fragmentation functions (no Tconstraints) H1^ (Collins) and D1T^ 30 Interpretation unpolarized quark distribution need pT helicity or chirality distribution need pT transverse spin distr. or transversity need pT need pT Matrix representation for M = [[±](x,pT)g+]T pT-dependent functions T-odd: g1T g1T – i f1T^ and h1L^ h1L^ + i h1^ (imaginary parts) 32 Bacchetta, Boglione, Henneman & Mulders PRL 85 (2000) 712 Jaffe (1984), Diehl & Gousset (1998), … Integrated quark correlators: collinear and TMD Rather than considering general correlator (p,P,…), one thus integrates over p.P = p- (~MR2, which is of order M2) 2 d ( . P ) d T i p. q ij ( x, pT ; n) e P j (0) i ( ) P 3 (2p ) and/or pT (which is of order 1) qij ( x ; n) d ( .P) i p. e P j (0) i ( ) P (2p ) .n T 0 TMD .n 0 lightfront collinear lightcone The integration over p- = p.P makes time-ordering automatic. This works for (x) and (x,pT) This allows the interpretation of soft (squared) matrix elements as forward antiquark-target amplitudes (untruncated!), which satisfy particular analyticity and support properties, etc. 33 (NON-)COLLINEARITY Summarizing oppertunities of TMDs TMD quark correlators (leading part, unpolarized) including T-odd part [ ]q pT P q 2 ^q 2 ( x, pT ) f1 ( x, pT ) i h1 ( x, pT ) M 2 Interpretation: quark momentum distribution f1q(x,pT) and its transverse spin polarization h1^q(x,pT) both in an unpolarized hadron The function h1^q(x,pT) is T-odd (momentum-spin correlations!) TMD gluon correlators (leading part, unpolarized) v n 1 p p g 1 n g 2 T T 2 T n ( x , p ) g f ( x , p ) g T T 1 T 2 2x M ^g 2 h 1 ( x, pT ) Interpretation: gluon momentum distribution f1g(x,pT) and its linear polarization h1^g(x,pT) in an unpolarized hadron (both are T-even) 34 (NON-)COLLINEARITY Twist expansion of (non-local) correlators Dimensional analysis to determine importance of matrix elements (just as for local operators) maximize contractions with n to get leading contributions dim[ (0)n ( )] 2 dim[ F n (0) F n ( )] 2 ‘Good’ fermion fields and ‘transverse’ gauge fields and in addition any number of n.A() = An(x) fields (dimension zero!) but in color gauge invariant combinations dim 0: dim 1: in iDn in gAn iT iDT iT gAT Transverse momentum involves ‘twist 3’. 35 OPERATOR STRUCTURE Soft parts: gauge invariant definitions + +… Matrix elements containing A (gluon) fields produce gauge link [C ] U[0, ] P exp -ig ds A 0 Any path yields a (different) definition … essential for color gauge invariant definition 4 d i p. [C ] [C ] ij ( p; P) e P (0) U j [0, ] i ( ) P 4 (2p ) 36 OPERATOR STRUCTURE A.V. Belitsky, X.Ji, F. Yuan, NPB 656 (2003) 165 D. Boer, PJM, F. Pijlman, NPB 667 (2003) 201 Gauge link results from leading gluons Expand gluon fields and reshuffle a bit: P 1 An ( p1 ) p1 iGTn ( p1 ) ... A ( p1 ) n. A( p1 ) i AT ( p1 ) ... n.P p1.n Coupling only to final state partons, the collinear gluons add up to a U+ gauge link, (with transverse connection from AT Gn reshuffling) 37 OPERATOR STRUCTURE Gauge-invariant definition of TMDs: which gauge links? d ( .P)d 2T i p. [C ] ( x, pT ; n) e P (0) U j [0, ] i ( ) P 3 (2p ) d ( .P) i p. q [n] ij ( x; n) e P j (0)U[0, ] i ( ) P .n T 0 (2p ) q[ C ] ij .n 0 TMD collinear Even simplest links for TMD correlators non-trivial: [-] T [] These merge into a ‘simple’ Wilson line in collinear (pT-integrated) case 38 OPERATOR STRUCTURE C Bomhof, PJM, F Pijlman; EPJ C 47 (2006) 147 F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301 TMD correlators: gluons 2 d ( . P ) d T i p. [ C ,C '] [C ] n [ C '] n ( x , p ; n ) e P U F (0) U F ( ) P g T [ ,0] [0, ] (2p )3 .n 0 The most general TMD gluon correlator contains two links, which in general can have different paths. Note that standard field displacement involves C = C’ F ( ) U[[C,] ] F ( )U[[C,] ] Basic (simplest) gauge links for gluon TMD correlators: g[,] g[-,-] g[,-] g[-,] 39 OPERATOR STRUCTURE M.G.A. Buffing, PJM, 1105.4804 Gauge invariance for SIDIS U[0 , ]U[ , ]U[ ,- ]U[ -,0 ] W[ n[0,] ]W-[ n[0,]† ] W[ n ][ p1 ]W-[ n ]† [k1 ] Strategy: transverse moments d SIDIS Trc [W[ p2 ][ p1 ] q ( x1 , p1T )] Trc [ q ( x2 , p2T )W-[ p1 ]†[ p2 ]] * [q ] ( x1 , p1T ) [q- †] (k1 , k1T ) ˆ g q q Problems with double T-odd functions in DY 40 COLOR ENTANGLEMENT T.C. Rogers, PJM, PR D81 (2010) 094006 Complications (example: qq qq) U+[n] [p1,p2,k1] modifies color flow, spoiling universality (and factorization) [ k ](11) U ( p, p ')...... ( p)... ( p ') 1 [ k ](1) [ k ](1) U ( p),U ( p ') ...... ( p)... ( p ') 41 2 COLOR ENTANGLEMENT Color entanglement 1 U -[ k ](21) ( p, p ') U -[ k ](2) ( p)U -[ k ](1) ( p ') 4 1 U -[ k ](1) ( p)U -[ k ](1) ( p ')U -[ k ](1) ( p) 4 1 U -[ k ](1) ( p ')U -[ k ](2) ( p) 4 42 COLOR ENTANGLEMENT Featuring: phases in gauge theories ' Pe ie ds . A i ( x) P Pe -ig x' x ds A i ( x ') P 43 COLOR ENTANGLEMENT Conclusions • TMDs enter in processes with more than one hadron involved (e.g. SIDIS and DY) • Rich phenomenology (Alessandro Bacchetta) • Relevance for JLab, Compass, RHIC, JParc, GSI, LHC, EIC and LHeC • Role for models using light-cone wf (Barbara Pasquini) and lattice gauge theories (Philipp Haegler) • Link of TMD (non-collinear) and GPDs (off-forward) • Easy cases are collinear and 1-parton un-integrated (1PU) processes, with in the latter case for the TMD a (complex) gauge link, depending on the color flow in the tree-level hard process • Finding gauge links is only first step, (dis)proving QCD factorization is next (recent work of Ted Rogers and Mert Aybat) 44 SUMMARY Jaffe (1984), Diehl & Gousset (1998), … Thus we need integrated correlators Rather than considering general correlator (p,P,…), one integrates over p.P = p- (~MR2, which is of order M2) 2 d ( . P ) d T i p. q ij ( x, pT ; n) e P j (0) i ( ) P 3 (2p ) and/or pT (which is of order 1) qij ( x ; n) d ( .P) i p. e P j (0) i ( ) P (2p ) .n T 0 TMD .n 0 lightfront collinear lightcone The integration over p- = p.P makes time-ordering automatic. This works for (x) and (x,pT) This allows the interpretation of soft (squared) matrix elements as forward antiquark-target amplitudes (untruncated!), which satisfy particular analyticity and support properties, etc. 45 (NON-)COLLINEARITY PARTON CORRELATORS Large values of momenta • Calculable! pT2 - x p M 2 p2 hard 1- xp p.P M R2 x p0 P p0T xp T - pT M << pT < Q x p ( pT2 - M 2 ) 2 x (1 - x p ) 0 ( x - x p ) pT2 x p (1 - x)M 2 ( x x p 1) p0T ~ M 0 ( p, P ) x (1 - x p ) s 2 T p ... 0 etc. 46 Bacchetta, Boer, Diehl, M JHEP 0808:023, 2008 (arXiv:0803.0227) T-odd single spin asymmetry Wn(q;P,S;Ph,Sh) = -Wn(-q;P,S;Ph,Sh) * Wn (q;P,S;Ph,Sh) = Wn(q;P,S;Ph,Sh) _ __ __ Wn(q;P,S;Ph,Sh) = Wn(q;P, -S;Ph, -Sh) ___ _ _ * * (q;P,S;P ,S ) = W (q;P,S;P ,S ) Wn h h n h h _ _ symmetry structure hermiticity parity time reversal • with time reversal constraint only even-spin asymmetries • the time reversal constraint cannot be applied in DY or in 1-particle inclusive DIS or ee• In those cases single spin asymmetries can be used to measure T-odd quantities (such as T-odd distribution or fragmentation functions) 47 Boer & Vogelsang Relevance of transverse momenta in hadron-hadron scattering p1 x1 P1 p1T p2 x2 P2 p2T At high energies fractional parton momenta fixed by kinematics (external momenta) DY p1.P2 q.P2 x1 p1.n P1.P2 P1.P2 Also possible for transverse momenta of partons f2 - f1 K1^ DY qT q - x1P1 - x2 P2 p1T p2T 2-particle inclusive hadron-hadron scattering qT z1-1K1 z2-1K2 - x1P1 - x2 P2 f K 2^ pp-scattering p1T p2T - k1T - k2T Care is needed: we need more than one hadron and knowledge of hard process(es)! 48 NON-COLLINEARITY Lepto-production of pions H1^ is T-odd and chiral-odd 49 Gauge link in DIS • In limit of large Q2 the result of ‘handbag diagram’ survives • … + contributions from A+ gluons ensuring color gauge invariance A+ Ellis, Furmanski, Petronzio Efremov, Radyushkin A+ gluons gauge link 50 Distribution including the gauge link (in SIDIS) A+ One needs also AT G+ = +AT AT()= AT(∞) + d G+ Belitsky, Ji, Yuan, hep-ph/0208038 Boer, M, Pijlman, hep-ph/0303034 From 0AT() m.e. Generic hard processes • E.g. qq-scattering as hard subprocess • Matrix elements involving parton 1 and additional gluon(s) A+ = A.n appear at same (leading) order in ‘twist’ expansion • insertions of gluons collinear with parton 1 are possible at many places • this leads for correlator involving parton 1 to gauge links to lightcone infinity C. Bomhof, P.J. Mulders and F. Pijlman, PLB 596 (2004) 277 [hep-ph/0406099]; EPJ C 47 (2006) 147 [hep-ph/0601171] Link structure for fields in correlator 1 52 SIDIS SIDIS [U+] = [+] DY [U-] = [-] 53 A2 2 hard processes: qq • E.g. qq-scattering as hard subprocess • The correlator (x,pT) enters for each contributing term in squared amplitude with specific link qq U□ = U+U-† □)U+] [Tr(U (x,pT) [U□U+](x,pT) 54 Gluons d ( .P)d 2T i p. [C ] n [ C '] n g ( x, pT ; C, C ') e P U F (0 ) U F ( ) P [ ,0] [0, ] 3 (2p ) • Using 3x3 matrix representation for U, one finds in gluon correlator appearance of two links, possibly with different paths. • Note that standard field displacement involves C = C’ F ( ) U[[C,] ] F ( )U[[C,] ] 55 .n 0 Integrating [±](x,pT) [±](x) d ( .P)d 2T i p. † n T n ( x, pT ) e P (0) U U U [0, ] [0T ,T ] [ , ] ( ) P 3 (2p ) [] collinear correlator d ( .P) ( x) e [] (2p ) i p. n P † (0)U[0, ] ( ) P .n T 0 56 .n 0 Integrating [±](x,pT) [±](x) transverse moment [ ] ( x) d 2 pT pT [ ] ( x, pT ) d ( .P)d 2T i p. † n T n ( x) d pT e P (0) U i U U [0, ] T [0T ,T ] [ , ] ( ) P 3 (2p ) d ( .P) i p. n [ ] ( x) e [ P † (0)U[0, iD ] T ( ) P (2p ) [] 2 .n 0 n n n n - P (0)U[0, d ( . P ) U gG ( ) U ] [ , ] [ , ] ( ) P [ ] ( x) D ( x) dx1 i G ( x, x - x1 ) x1 i = FaD (x) + ò dx1 P i x G(p,p-p1) FaG (x, x - x1 ) ± p FaG (x, x) 1 Fa¶ (x) T-even T-odd 57 ] LC Gluonic poles • Thus: [U](x) = (x) [U](x) ~ = (x) + CG[U] pG(x,x) • Universal gluonic pole m.e. (T-odd for distributions) • pG(x) contains the weighted T-odd functions h1^(1)(x) [Boer-Mulders] and (for transversely polarized hadrons) the function f1T^(1)(x) [Sivers] ~ • (x) contains the T-even functions h1L^(1)(x) and g1T^(1)(x) • For SIDIS/DY links: CG[U±] = ±1 • In other hard processes one encounters different factors: CG[U□ U+] = 3, CG[Tr(U□)U+] = Nc 58 Efremov and Teryaev 1982; Qiu and Sterman 1991 Boer, Mulders, Pijlman, NPB 667 (2003) 201 A2 2 hard processes: qq • E.g. qq-scattering as hard subprocess • The correlator (x,pT) enters for each contributing term in squared amplitude with specific link qq U□ = U+U-† □)U+] [Tr(U (x,pT) [U□U+](x,pT) 59 Bacchetta, Bomhof, Pijlman, Mulders, PRD 72 (2005) 034030; hep-ph/0505268 examples: qqqq in pp Tr (U ) U U U Nc D1 q 2 Nc 1 2 Nc -1 [( ) ] - 2 2 Nc [ ] -1 D4 2 Nc -1 p G CG [D1] = CG [D2] D2 D3 2 Nc - 5 q 2 2 Nc 2 Nc -1 [( ) ] - 2 Nc 1 2 Nc -1 [ ] - 2 Nc 3 2 Nc -1 p G CG [D3] = CG [D4] 60 Bacchetta, Bomhof, D’Alesio,Bomhof, Mulders, Murgia, hep-ph/0703153 examples: qqqq in pp D1 q 1 2 Nc † [( -1 )] 2 Nc - 2 2 Nc -1 [ -] - 2 Nc - 3 2 Nc -1 p G For Nc: CG [D1] -1 (color flow as DY) q 2 Nc 2 Nc -1 [( † )] - 1 2 Nc [-] -1 2 Nc 1 2 Nc -1 p G 61 Gluonic pole cross sections • In order to absorb the factors CG[U], one can define specific hard cross sections for gluonic poles (which will appear with the functions in transverse moments) • for pp: ˆ[ q ]qqq CG[U ( D)]ˆ [ D] ˆ qqqq ˆ [ D] [ D] [ D] (gluonic pole cross section) etc. dˆ qqqq • for SIDIS: for DY: ˆ [q] q ˆ q q dˆ(q)qqq ˆ[q]q - ˆqq y 62 Bomhof, Mulders, JHEP 0702 (2007) 029 [hep-ph/0609206] examples: qgqg in pp weigted Transverse momentum dependent q D1 2 Nc 2 Nc -1 [( ) - ] - 1 2 Nc [] -1 - Nc 2 1 2 Nc -1 p G Only one factor, but more DY-like than SIDIS D2 D3 D4 Note: also etc. 63 e.g. relevant in Bomhof, Mulders, Vogelsang, Yuan, PRD 75 (2007) 074019 examples: qgqg weighted Transverse momentum dependent D1 q 2 Nc 2 Nc - 1 [( ) - ] - 1 2 Nc - 1 [] - 2 Nc 2 1 Nc - 1 p G D2 D3 D4 D5 64 examples: qgqg weighted Transverse momentum dependent q 2 Nc 2 Nc - 1 [( ) - ] - 1 2 Nc - 1 [] - 2 Nc 2 1 Nc - 1 p G 65 examples: qgqg weighted Transverse momentum dependent q q q 2 q NNc2 c 2 2( N c - 1) 2 2( N c - 1) 4 Nc 2 ( Nc - 1) [( [( )( )( † ) ] 2 [( )( † † )] 2 2 - Nc 2( N c - 1) q [( ) - ] Nc - 1 Nc ) N]c2 2 2 Nc 1 [( ) - ] 2 2 [( [] ) -] 2 ( Nc 2 Nc 2 Nc [( ) - ] - 1) -1 2 [( )( - [] 2 Nc - 1 1 1 - [ ] - p G 2 N2 -1 c -1 2( N c -N1) 2 - 1 † - )] N c -c 1 1 2 Nc - [ ] -1 1 2 Nc -1 [ ] 2 Nc 1 2 Nc - 1 1 2 Nc - 1 Nc 2 1 2 Nc -1 p G p G p G p G 66 examples: qgqg weighted Transverse momentum dependent It is also possible to group the TMD 2 2 Nc Nc 1 1 [( ) ] [ ] functions in a smart into q way two! - 2 - 2 p G 2 N 1 N 1 Nc - 1 c c (nontrivial for nine diagrams/four color-flow possibilities) 2 2 N 2 Nc 1 1 1 [( )( † ) N]c2 [( ) - ] [] [( )( ) ] q N2Nc22c † 2 [( ) -]2-2 2 [ ] - p G 2 2 2( Ncc - 1) [( ) - ] c -1 2( N - 1) [( )( 2() N]c - 1) 2( NN c -N1) N 1N-c 1- 1 [ ] q † c 2 2( N c p G q - 1) 2 Nc [( )( 42 N Ncc - 1 [( )( 2 2 ( N c - 1) † † ) ] c 2 2( N c - 1) - c 2 Nc -1 - 1 2 Nc - 1 p G 1 - 2 2 [ ] N )] - N2c c- 12 [( ) -] ( N c - 1) 2 But still no factorization! Nc q 2 [( Nc - 1 )( † )] 1 2 Nc - [ ] -1 1 2 Nc -1 [ ] Nc 2 1 2 Nc -1 p G p G 67 ‘Residual’ TMDs • We find that we can work with basic TMD functions [±](x,pT) + ‘junk’ • The ‘junk’ constitutes process-dependent residual TMDs [( )( † )] [] ( x, pT ) [( )( † )] ( x, pT ) - [ ] ( x, pT ) [( )( † ) ] ( x , pT ) [ ] ( x, pT ) 2[ ] ( x, pT ) - [ -] ( x, pT ) [ ] ( x, pT ) no definite T-behavior definite T-behavior • The residuals satisfies (x) = 0 and pG(x,x) = 0, i.e. cancelling kT contributions; moreover they most likely disappear for large kT 68 pT P q 2 ^q 2 ( x, pT ) f1 ( x, pT ) i h1 ( x, pT ) M 2 q q ^ q pT P ( x, pT ) f1 i h1 M 2 PnpT p g 5g M q T ^q ^q q i[ P , n ] e f g h 2 M M 2 q 1 q M q ( x) f1 ( x) P e ( x) 2 2 1 q M q ( x) f1 ( x) p m 2x 2 q m q q e ( x ) f1 ( x) Mx 69 d ( .P)d 2T i p. ( x, pT ) e P (0) ( ) P .n0 3 (2p ) pT P q q 2 ^q 2 ( x, pT ) f1 ( x, pT ) i h 1 ( x, pT ) M 2 d ( .P) i p. ( x) d 2 pT ( x, pT ) e P (0) ( ) P .n 0 (2p ) P q q ( x) f1 ( x) 2 d ( .P) i p. 2 ( x) d pT pT ( x, pT ) e P iT ( (0) ( )) P .n 0 (2p ) 2 ^q p P P q ^ q (1) 2 2 T ( x) h 1 ( x) d pT h ( x , p T) 2 1 70 2 2 2M T T q 2 2 ^q 2 2 kT 2 z ( z, kT ) D1 ( z, z kT ) i H1 ( x, z kT ) K M q q ^ q kT 2 z ( z, kT ) D1 i H1 K Mh KnkT q g 5g k ^q ^q q i[ K , n ] T Mh E D G H M M 2 h h 2 q q q q i[ K , n ] ( z) D1 ( z ) K M h E H z 2 1 q q ( z) D1 ( z ) k m ... 71 2 q pT P q 2 ^q 2 ( x, pT ) f1 ( x, pT ) ih1 ( x, pT ) M 2 q q 2 ^q 2 g 5 pT P L ( x, pT ) SL g1L ( x, pT ) g 5 SL h1L ( x, pT ) M 2 æ q öP q 2 q 2 pT .ST FT (x, pT ) = ç h (x, pT ) g 5 ST - g1T (x, pT ) g5 ÷ 1T M è ø2 PnpT ST æ öP e q 2 ^q 2 pT .ST g 5 pT ÷÷ + çç f1T (x, pT ) - h (x, pT ) 1T M M M ø2 è q U 72 P ( x) f ( x) 2 q U q 1 P ( x) S L g ( x) g 5 2 q L q 1 P ( x) h ( x) g 5 ST 2 q T q 1 73 74 1-parton unintegrated • Resummation of all phases spoils universality • Transverse moments (pT-weighting) feels entanglement • Special situations for only one transverse momentum, as in single weighted asymmetries 2 2 d q q ... d T T p1T 2 2 d p ... 2T (qT - p1T - p2T ) d 2 p1T p1T d 2 p2T ... 2 d p1T 2 d p p 2 T 2 T ... • But: it does produces ‘complex’ gauge links • Applications of 1PU is looking for gluon h1^g (linear gluon polarization) using jet or heavy quark production in ep scattering (e.g. EIC), D. Boer, S.J. Brodsky, PJM, C. Pisano, PRL 106 (2011) 132001 75 COLOR ENTANGLEMENT M.G.A. Buffing, PJM; in preparation Full color disentanglement? NO! (2 ) (02 ) [ 1 , - ] [ - ,0 1 ] [ , 1 ][ ,2 ] a a [0 1 , ][02 , ] [2 ,-] b* [ - ,02 ] (1 ) (01 ) X ~ Trc [ [( ) ] Trc [ Loop 1: b* ( p1 ) [( ) ] * b [( ) -† ] ( p2 ) b* (k1 ) a ] [( ) -† ] ( k 2 ) a ] n] [n] [ n ]† U[0 2 , ][01 , ]U[ , 2 ][ ,1 ]U[1 ,- ]U[ -,01 ] W[ [0 W W [01 ,1 ] - [01 , 1 ] 2 , 2 ] W[ n ][ p2 ]W [ n ][ p1 ] 76 COLOR ENTANGLEMENT Result for integrated cross section d [ C1 ( D )] [ D] ˆ ~ ( x , p ) ( x ) a 1 1T b 2 ab c... c ( z1 )... 2 d p1T D,abc (1PU) Collinear cross section [C ] ( x) d 2 pT [ C ] ( x, pT ) Gauge link structure becomes irrelevant! ~ a ( x1 )b ( x2 ) ˆ ab c... c ( z1 )... abc [ D] ˆ abc... ˆ ab c... (partonic cross section) D 77 APPLICATIONS Result for single weighted cross section d [ C1 ( D )] [ D] ˆ ~ ( x , p ) ( x ) a 1 1T b 2 ab c... c ( z1 )... 2 d p1T D,abc (1PU) Single weighted cross section (azimuthal asymmetry) [C ] ( x) d 2 pT pT [ C ] ( x, pT ) p1T ~ [C ( D )] [ D] ˆ ( x ) ( x ) a 1 b 2 abc... c ( z1 )... D,abc 78 APPLICATIONS Result for single weighted cross section d [ C1 ( D )] [ D] ˆ ~ ( x , p ) ( x ) a 1 1T b 2 ab c... c ( z1 )... 2 d p1T D,abc p1T p1T p1T p1T (1PU) [ D] ~ [aC ( D)] ( x1 )b ( x2 ) ˆ ab c... c ( z1 )... [ D] ,abc ~ D [aC ( D)] ( x1 )b ( x2 ) ˆ ab c... c ( z1 )... [ D] ,abc ~ D [aC ( D)] ( x1 )b ( x2 ) ˆ ab c... c ( z1 )... [ D] ,abc ~ D [aC ( D)] ( x1 )b ( x2 ) ˆ ab c... c ( z1 )... D,abc 79 APPLICATIONS Qiu, Sterman; Koike; Brodsky, Hwang, Schmidt, … Result for single weighted cross section d [ C1 ( D )] [ D] ˆ ~ ( x , p ) ( x ) a 1 1T b 2 ab c... c ( z1 )... 2 d p1T D,abc p1T ~ (1PU) [C ( D )] [ D] ˆ ( x ) ( x ) a 1 b 2 abc... c ( z1 )... D,abc [C ] [U (C )] [ C] ( x) ( x) CG p G ( x, x) [C ] T-even G(p,p-p1) G ( x, x - x1 ) universal matrix T-odd elements (operator structure) G(x,x) is gluonic pole (x1 = 0) matrix element (color entangled!) 80 APPLICATIONS Result for single weighted cross section d [ C1 ( D )] [ D] ˆ ~ ( x , p ) ( x ) a 1 1T b 2 ab c... c ( z1 )... 2 d p1T D,abc p1T ~ (1PU) [C ( D )] [ D] ˆ ( x ) ( x ) a 1 b 2 abc... c ( z1 )... D,abc [C ] [U (C )] [ C] ( x) ( x) CG p G ( x, x) [C ] universal matrix elements Examples are: CG[U+] = 1, CG [U- ] = -1, CG[W U+] = 3, CG [Tr(W)U+]81 = Nc APPLICATIONS Result for single weighted cross section d [ C1 ( D )] [ D] ˆ ~ ( x , p ) ( x ) a 1 1T b 2 ab c... c ( z1 )... 2 d p1T D,abc p1T ~ [C ( D )] [ D] ˆ ( x ) ( x ) a 1 b 2 abc... c ( z1 )... D,abc [C ] p1T ~ (1PU) [U (C )] [ C] ( x) ( x) CG p G ( x, x) [C ] a ( x1 )b ( x2 ) ˆ abc... c ( z1 )... abc p G a ( x1 , x1 ) b ( x2 ) ˆ[ a ]b c... c ( z1 )... T-odd part abc [ D] ˆ[ a ]bc... CG[U (C ( D ))]ˆ ab c... D (gluonic pole cross section) 82 APPLICATIONS Higher pT moments • Higher transverse moments [ N ]1 ... N ( x) d 2 pT ( pT1 ... pT1 - traces ) ( x, pT ) • involve yet more functions ( x ), ( x , x ), G GG ( x, x, x) • Important application: there are no complications for fragmentation, since the ‘extra’ functions G, GG, … vanish. using the link to ‘amplitudes’; L. Gamberg, A. Mukherjee, PJM, PRD 83 (2011) 071503 (R) • In general, by looking at higher transverse moments at tree-level, one concludes that transverse momentum effects from different initial state hadrons cannot simply factorize. 83 SUMMARY DIS q2 -Q2 P2 M 2 Q2 2 P.q xB q P2 M 2 n q xB P P.q P 84 DIS Basis 1 n P q xB P n- n P.q Basis 2 q Q ˆt q 2 xB P Q zˆ - q P 85 Principle for DY u ( p , s) u ( p , s) s 1 1 ( p1 , P1 ) ~ ( p 1 m) f ( p1 ) • Instead of partons use correlators • Expand parton momenta (for DY take e.g. n1= P2/P1.P2) p x P pT n ~Q ~M ~ M2/Q x p p.n ~ 1 p.P - xM 2 ~ M 2 86 (NON-)COLLINEARITY