Transcript Template
TITLE WHEPP X January 2008 Non-collinearity in high energy scattering processes Piet Mulders 1 [email protected] OUTLINE Outline • Introduction: partons in high energy scattering processes • (Non-)collinearity: collinear and non-collinear parton correlators – OPE, twist – Gauge invariance – Distribution functions (collinear, TMD) • Observables – Azimuthal asymmetries • • • • – Time reversal odd phenomena/single spin asymmetries Gauge links – Resumming multi-gluon interactions: Initial/final states – Color flow dependence Applications Universality: an example gqgq Conclusions 2 INTRODUCTION QCD & Standard Model • • • QCD framework (including electroweak theory) _ provides the_ machinery to calculate cross sections, e.g. g*q q, qq g*, g* qq, qq qq, qg qg, etc. E.g. qg qg Calculations work for plane waves 0 i( s ) ( ) p, s ui ( p, s) e ip. 3 INTRODUCTION Confinement in QCD • Confinement limits us to hadrons as ‘quark sources’ or ‘targets’ (with PX= Pp) X i( s ) ( ) P e ip. X i( s ) ( ) A ( ) P e i ( p p1 ). ip1 . • • • These involve nucleon states At high energies interference terms between different hadrons disappear as 1/P1.P2 Thus, the theoretical description/calculation involves for hard processes, a forward matrix element of the form d 3 PX ij ( p, P) P | j (0) | X X | i (0) | P ( P PX p) 3 (2 ) 2EX 1 4 i p. ( p , P ) d e P | j (0) i ( ) | P quark ij 4 (2 ) momentum 4 INTRODUCTION Correlators in high-energy processes • • • • Look at parton momentum p Parton belonging to a particular hadron P: p.P ~ M2 For all other momenta K: p.K ~ P.K ~ s ~ Q2 Introduce a generic vector n ~ satisfying P.n = 1, then we have n ~ 1/Q, e.g. n = K/(P.K) p x P pT s n ~Q ~M ~ M2/Q x p.n ~ 1 s p.P xM 2 ~ M 2 • Up to corrections of order M2/Q2 one can perform the s-integration d ( .P)d 2T i p. † ij ( x, pT ) d ( p.P) ij ( p, P) e P j (0) i ( ) P 3 (2 ) 5 .n 0 INTRODUCTION (calculation of) cross section in DIS Full calculation + LEADING (in M/Q) + + +… 6 INTRODUCTION (calculation of) cross section in SIDIS Full calculation + LEADING (in M/Q) + + +… 7 INTRODUCTION Leading partonic structure of hadrons Need PH.Ph ~ s (large) to get separation of soft and hard parts hard process p H Allows k Ph PH ds… = d(p.P)… h fragmentation correlator distribution correlator Ph D(z, kT) (x, pT) PH Ph PH 8 INTRODUCTION Partonic correlators The cross section can be expressed in hard squared QCD-amplitudes and distribution and fragmentation functions entering in forward matrix elements of nonlocal combinations of quark and gluon field operators (f or G). These are the (hopefully universal) objects we are after, useful in parametrizations and modelling. Distribution functions p xP pT d ( .P)d 2T i p. † ( x, pT ) e P f (0)f ( ) P 3 (2 ) Fragmentation functions p.P xM 2 n P.n .n 0 1 2 k .K z M h 1 k K kT n z K .n d ( .K )d 2T i k . † D( z, kT ) e 0 f (0) K , X K , X f ( ) 0 3 (2 ) .n 0 9 (NON-)COLLINEARITY (non-)collinearity of parton correlators The cross section can be expressed in hard squared QCD-amplitudes and distribution and fragmentation functions entering in forward matrix elements of nonlocal combinations of quark and gluon field operators (f or G). These are the (hopefully universal) objects we are after, useful in parametrizations and modelling. Distribution functions p xP pT d ( .P)d 2T i p. † ( x, pT ) e P f (0)f ( ) P 3 (2 ) p.P xM 2 n P.n .n 0 lightfront: = 0 TMD d ( .P) i p. ( x) d pT ( x, pT ) e P f † (0)f ( ) P (2 ) 2 collinear dx ( x) P f † (0) f (0) P .n T 0 lightcone 10 local (NON-)COLLINEARITY Spin and twist expansion Spin n: • Local matrix elements in 1 n ~ (P …P – traces) Operators can be classified via their Twist t: canonical dimensions and spin (OPE) dimension spin • Nonlocal matrix elements in (x) Parametrized in terms of (collinear) distribution functions f…(x) that involve operators of different spin but with one specific twist t that determines the power of (M/Q)t-2 in observables (cross sections and asymmetries). Moments give local operators. M ( n ) dx x n 1 f ( x) • Nonlocal matrix elements in (x,pT) Parametrized in terms of TMD distribution functions f…(x,pT2) that involve operators of different spin and different twist. The lowest twist determines the operational twist t of the TMD functions and determines the power of (M/Q)t-2 in observables. Transverse moments give n 2 collinear functions. p (n) 2 f 2 T ( x) d pT f ( x , p T) 2 11 2M (NON-)COLLINEARITY Gauge invariance for quark correlators • Presence of gauge link needed for color gauge invariance [C ] U[0, ] P exp ig ds A 0 A A P AT An • The gauge link arises from all ‘leading’ m.e.’s as A...A d ( .P) i p. [n] ij ( x; n) e P j (0)U[0, ] i ( ) P .n T 0 (2 ) d ( .P)d 2T i p. q [C ] ij ( x, pT ; n, C ) e P (0) U j [0, ] i ( ) P 3 (2 ) q .n 0 • Transverse pieces arise from ATa Ga = +Aa + … • Basic gauge links: [U-] = [] TIME RERVERSAL [U+] = [] 12 Distribution (NON-)COLLINEARITY including the gauge link (in SIDIS) A+ One needs also AT G+a = +ATa ATa()= ATa(∞) + d G+a Belitsky, Ji, Yuan 2002 Boer, M, Pijlman 2003 From (0)AT()() m.e. (NON-)COLLINEARITY Gauge invariance for gluon correlators 2 d ( . P ) d T i p. [C ] na [ C '] n a ( x , p ; C , C ') e P U F (0 ) U F ( ) P g T [ ,0] [0, ] (2 )3 .n 0 • Using 3x3 matrix representation for U, one finds in TMD gluon correlator appearance of two links, possibly with different paths. • Note that standard field displacement involves C = C’ Fa ( ) U[[C,] ] Fa ( )U[[C,] ] • Basic gauge links g[,] g[,] g[,] g[,] 14 (NON-)COLLINEARITY Collinear parametrizations • Gauge invariant correlators distribution functions • Collinear quark correlators (leading part, no n-dependence) ( x) q (f q 1 ( x) S L g ( x) g 5 h ( x) g 5 ST ) q 1 q 1 P 2 S SL P ST M • i.e. massless fermions with momentum distribution f1q(x) = q(x), chiral distribution g1q(x) = Dq(x) and transverse spin polarization h1q(x) = q(x) in a spin ½ hadron • Collinear gluon correlators (leading part) 1 g g g ( x) g f ( x ) i S ( T 1 L T g1 ( x ) ) 2x • i.e. massless gauge bosons with momentum distribution f1g(x) = g(x) and polarized distribution g1g(x) = Dg(x) 15 (NON-)COLLINEARITY TMD parametrizations • Gauge invariant correlators distribution functions • TMD quark correlators (leading part, unpolarized) pT P q 2 q 2 ( x, pT ) f1 ( x, pT ) i h1 ( x, pT ) M 2 q TMD correlators q[U] and g[U,U’] do depend on gauge links! • as massless fermions with momentum distribution f1q(x,pT) and transverse spin polarization h1q(x,pT) in an unpolarized hadron • The function h1q(x,pT) is T-odd! • TMD gluon correlators (leading part, unpolarized) v 1 p p g 1 g 2 T T 2 T ( x , p ) g f ( x , p ) g T T 1 T 2 2x M g 2 h 1 ( x, pT ) • as massless gauge bosons with momentum distribution f1g(x,pT) and 16 linear polarization h1g(x,pT) in an unpolarized hadron The quark distributions (in pictures) unpolarized quark distribution need pT helicity or chirality distribution need pT transverse spin distr. or transversity need pT need pT (NON-)COLLINEARITY OBSERVABLES Results for deep inelastic processes DIS sg *N X f1N q ( x) sˆg *qq Ds g *N X g1N q ( x) Dsˆg *q q SIDIS sg *N hX f1N q ( x) sˆg *qq D1qN ( z) 18 OBSERVABLES Probing intrinsic transverse momenta • In a hard process one probes quarks and gluons p xP pT • Momenta fixed by kinematics (external momenta) k z 1P kT DIS SIDIS x xB Q2 / 2P.q z zh P.Kh / P.q • Also possible for transverse momenta SIDIS f2 f1 K1 qT q xB P zh1Kh kT pT 2-particle inclusive hadron-hadron scattering qT z11K1 z21K2 x1P1 x2 P2 p1T p2T k1T k2T • Sensitivity for transverse momenta requires 3 momenta SIDIS: g* + H h + X f K 2 pp-scattering DY: H1 + H2 g* + X e+e-: g* h1 + h2 + X …and knowledge of hard process(es)! hadronproduction: H1 + H2 h1 + h2 + X h+X (?) 19 OBSERVABLES Time reversal as discriminator W (q; P, S , Ph , Sh ) W (q; P, S , Ph , Sh ) symmetry structure W* (q; P, S, Ph , Sh ) W (q; P, S, Ph , Sh ) hermiticity W (q; P, S, Ph , Sh ) W (q; P, S , Ph , Sh ) parity W* (q; P, S, Ph , Sh ) W (q; P, S , Ph , Sh ) time reversal W (q; P, S , Ph , Sh ) W (q; P, S , Ph , Sh ) combined • If time reversal can be used to restrict observable one has only even spin asymmetries • If time reversal symmetry cannot be used as a constraint (SIDIS, DY, pp, …) one can nevertheless connect T-even and T-odd phenomena (since T holds at level of QCD). • In hard part T is valid up to order as2 20 OBSERVABLES Results for deep inelastic processes qT q xB P zh1Kh kT pT Sivers asymmetry qT M sin(fh fS )s g *N X h 1q ( x) sˆg *q q H1(1) q ( z ) Collins asymmetry qT M sin(fh fS ) s g *N X f1T(1) q ( x) sˆg *qq D1q ( z ) Function as appearing in parametrization of [+] 21 GAUGE LINKS Generic hard processes • Matrix elements involving parton 1 and additional gluon(s) A+ = A.n appear at same (leading) order in ‘twist’ expansion and produce link [U](1) • insertions of gluons collinear with parton 1 are possible at many places • this leads for correlator (1) to gauge links running to lightcone ± infinity Link structure for fields in correlator 1 • SIDIS [+](1) • DY [](1) C. Bomhof, P.J. Mulders and F. Pijlman, PLB 596 (2004) 277 [hep-ph/0406099]; EPJ C 47 (2006) 147 [hep-ph/0601171] 22 GAUGE LINKS Integrating [±](x,pT) [±](x) d ( .P)d 2T i p. † n T n ( x, pT ) e P (0) U U U [0, ] [0T ,T ] [ , ] ( ) P 3 (2 ) [] collinear correlator d ( .P) ( x) e [] (2 ) i p. n P † (0)U[0, ] ( ) P .n T 0 [] [] 23 .n 0 GAUGE LINKS Integrating [±](x,pT) a[±](x) transverse moments a [] a [ ] ( x) d 2 pT pTa [ ] ( x, pT ) d ( .P)d 2T i p. † n a T n ( x) d pT e P (0) U i U U [0, ] T [0T ,T ] [ , ] ( ) P 3 (2 ) 2 a [ ] ( x) aD ( x) dx1 i x1 i aD ( x) dx1 P i x1 aG ( x, x x1 ) G(p,pp1) aG ( x, x x1 ) aG ( x, x) a ( x) T-even Gluonic pole m.e. T-odd 24 .n 0 GAUGE LINKS A2 2 hard processes: qq • E.g. qq-scattering as hard subprocess • The correlator (x,pT) enters for each contributing term in squared amplitude with specific link qq U□ = U+U† [Tr(U□)U+] = [(□)+] Traced loop [U□U+] = [□+] loop 25 GAUGE LINKS Gluonic poles • Thus: [U](x) = (x) [U]a(x) = ~ a(x) + CG[U] Ga(x,x) • Universal gluonic pole m.e. (T-odd for distributions) • G(x) contains the weighted T-odd functions h1(1)(x) [BoerMulders] and (for transversely polarized hadrons) the function f1T(1)(x) [Sivers] ~ • (x) contains the T-even functions h1L(1)(x) and g1T(1)(x) • For SIDIS/DY links: CG[±] = ±1 • In other hard processes one encounters different factors: CG[□+] = 3, CG[(□)+] = Nc Efremov and Teryaev 1982; Qiu and Sterman 1991 26 Boer, Mulders, Pijlman, NPB 667 (2003) 201 C. Bomhof, P.J. Mulders and F. Pijlman, EPJ C 47 (2006) 147 APPLICATIONS examples: qqqq in pp Tr (U ) U U U Nc D1 q 2 Nc 1 2 Nc 1 [( ) ] 2 2 Nc [ ] 1 D4 2 Nc 1 G CG [D1] = CG [D2] D2 D3 2 Nc 5 q 2 2 Nc 2 Nc 1 [( ) ] 2 Nc 1 2 Nc 1 [ ] 2 Nc 3 2 Nc 1 G CG [D3] = CG [D4] 27 Bacchetta, Bomhof, Pijlman, M, PRD 72 (2005) 034030; hep-ph/0505268 APPLICATIONS examples: qqqq in pp D1 q 1 2 Nc † [( 1 )] 2 Nc 2 2 Nc 1 [ ] 2 Nc 3 2 Nc 1 G For Nc: CG [D1] 1 (color flow as DY) q 2 Nc 2 Nc 1 [( † )] 1 2 Nc [] 1 2 Nc 1 2 Nc 1 G 28 Bacchetta, Bomhof, D’Alesio,Bomhof, M, Murgia, PRL2007, hep-ph/0703153 APPLICATIONS Gluonic pole cross sections • In order to absorb the factors CG[U], one can define specific hard cross sections for gluonic poles (which will appear with the functions in transverse moments) • for pp: sˆ[ q ]qqq CG[U ( D)]sˆ [ D] sˆ qqqq sˆ [ D] [ D] [ D] (gluonic pole cross section) etc. dsˆ qqqq • for SIDIS: for DY: sˆ [q] q sˆ q q dsˆ(q)qqq sˆ[q]q sˆqq y 29 Bomhof, Mulders, JHEP 0702 (2007) 029 [hep-ph/0609206] APPLICATIONS examples: qgqg in pp weigted Transverse momentum dependent q D1 2 Nc 2 Nc 1 [( ) ] 1 2 Nc [] 1 Nc 2 1 2 Nc 1 G Only one factor, but more DY-like than SIDIS D2 D3 D4 Note: also . etc Bomhof, M, Vogelsang, Yuan, PRD 75 (2007) 074019 Boer, M, Pisano, hep-ph/0712.0777 30 UNIVERSALITY Universality (examples qgqg) weighted Transverse momentum dependent D1 q 2 Nc 2 Nc 1 [( ) ] 1 2 Nc 1 [] 2 Nc 2 1 Nc 1 G D2 D3 D4 D5 31 UNIVERSALITY Universality (examples qgqg) weighted Transverse momentum dependent q 2 Nc 2 Nc 1 [( ) ] 1 2 Nc 1 [] 2 Nc 2 1 Nc 1 G 32 UNIVERSALITY Universality (examples qgqg) weighted Transverse momentum dependent q q q 2 q NNc2 c 2 2( N c 1) 2 2( N c 1) 4 Nc 2 ( Nc 1) [( [( )( )( † ) ] 2 [( )( † † )] 2 2 Nc 2( N c 1) q [( ) ] Nc 1 Nc ) N]c2 2 2 Nc 1 [( ) ] 2 2 [( [] ) ] 2 ( Nc 2 Nc 2 Nc [( ) ] 1) 1 2 [( )( [] 2 Nc 1 1 1 [ ] G 2 N2 1 c 1 2( N c N1) 2 1 † )] N c c 1 1 2 Nc [ ] 1 1 2 Nc 1 [ ] 2 Nc 1 2 Nc 1 1 2 Nc 1 Nc 2 1 2 Nc 1 G G G G 33 UNIVERSALITY Universality (examples qgqg) weighted Transverse momentum dependent It is also possible to group the TMD 2 2 Nc Nc 1 1 [( ) ] [ ] functions in a smart into q way two! 2 2 G 2 N 1 N 1 Nc 1 c c (nontrivial for nine diagrams/four color-flow possibilities) 2 2 N 2 Nc 1 1 1 [( )( † ) N]c2 [( ) ] [] [( )( ) ] q N2Nc22c † 2 [( ) ]22 2 [ ] G 2 2 2( Ncc 1) [( ) ] c 1 2( N 1) [( )( 2() N]c 1) 2( NN c N1) N 1Nc 1 1 [ ] q † c 2 2( N c G q 1) 2 Nc [( )( 42 N Ncc 1 [( )( 2 2 ( N c 1) † † ) ] c 2 2( N c 1) c 2 Nc 1 1 2 Nc 1 G 1 2 2 [ ] N )] N2c c 12 [( ) ] ( N c 1) 2 But still no factorization! Nc q 2 [( Nc 1 )( † )] 1 2 Nc [ ] 1 1 2 Nc 1 [ ] Nc 2 1 2 Nc 1 G G 34 UNIVERSALITY ‘Residual’ TMDs • We find that we can work with basic TMD functions [±](x,pT) + ‘junk’ • The ‘junk’ constitutes process-dependent residual TMDs [( )( † )] [] ( x, pT ) [( )( † )] ( x, pT ) [ ] ( x, pT ) [( )( † ) ] ( x , pT ) [ ] ( x, pT ) 2[ ] ( x, pT ) [ ] ( x, pT ) [ ] ( x, pT ) no definite T-behavior definite T-behavior • The residuals satisfies (x) = 0 and G(x,x) = 0, i.e. cancelling kT contributions; moreover they most likely disappear for large kT 35 Bomhof, Mulders, Vogelsang, Yuan, NPB, hep-ph/0709.1390 CONCLUSIONS Conclusions • Beyond collinearity many interesting phenomena appear • For integrated and weighted functions factorization is possible (collinear quark, gluon and gluonic pole m.e.) • Accounted for by using gluonic pole cross sections (new gauge-invariant combinations of squared hard amplitudes) • For TMD distribution functions the breaking of universality can be made explicit and be attributed to specific matrix elements • Many applications in hard processes. Including fragmentation (e.g. polarized Lambda’s within jets) even at LHC References: Qiu, Vogelsang, Yuan, hep-ph/0704.1153 Collins, Qiu, hep-ph/0705.2141 Qiu, Vogelsang, Yuan, hep-ph/0706.1196 Meissner, Metz, Goeke, hep-ph/0703176 Collins, Rogers, Stasto, hep-ph/0708.2833 Bomhof, Mulders, hep-ph/0709.1390 Boer, Bomhof, Hwang, Mulders, hep-ph/0709.1087 36