Vortragsthema

Download Report

Transcript Vortragsthema

PUMA and Planet Simulator
Installation
Titelmasterformat durch Klicken bearbeiten
Graphics
Model setup
Climate
16.07.2015
Richard Blender
Москва June 18, 2010
PUMA and Planet Simulator (PlaSim)
1. Installation
2. Model Starter Graphical User Interface
3. PUMA design
4. Planet Simulator design and climate
PUMA and Planet Simulator: Credits
Frank Lunkeit
Edilbert Kirk
Thomas Frisius
Torben Kunz, Simon Blessing, Silke Schubert
Kerstin Haberkorn, Hartmut Borth
Email addresses: [email protected], [email protected]
Klaus Fraedrich
PUMA and Planet Simulator: Model Design
Model Environment for geophysical fluid dynamics and climate simulations
Earth, Mars and Titan
Modular, Parallel, Portable
Fortran90, MPI
Data compatible
GRIB, NetCDF, ECHAM
Documentation
Users's Guide, Reference Manual, Commented Fortran 90 source code
Graphics
Interactive Graphical User Interface
Open source
Model Starter most
PUMA and Planet Simulator: Package Installation
See also the file README
Most version 16 soon available
PUMA and Planet Simulator: Installed directories and files
PUMA and Planet Simulator: directories
Time steps
T21
T42
PUMA PlaSim
60
45 min
30
15
Restart
In directory
Asks for file
Create by
/run
(im /puma or /plasim)
puma_restart
cp puma_status puma_restart
Boundary conditions
e.g. SST in PlaSim, altered in version 16, using codes
Directory
/run
File
surface.txt (12 months, annual cycle)
GUI
Start GUI:
>most.x
Specify
parameters
Model starter Most, Graphical user interface
Graphical User Interface GUI
PUMA
Change parameters and output
windows interactively
DISP Noise amplitude
Global means
DTEP Temp diff Equator - Pole
DTNS Temp diff North - South
Select visible windows
impacts CPU time
PUMA and Planet Simulator
Graphical User Interface
GUI
amplitudes
speed
Planet Simulator
CO2 concentration [ppmv]
GSOL0 solar const [W/m2]
DAWN zenith angle threshold
PUMA and Planet Simulator: Run long term simulations
Preparation using GUI
Simulation
PUMA and Planet Simulator: Postprocessing, the ´Pumaburner´
PUMA and Planet Simulator: Pumaburner options (v5 available)
PUMA
Portable University Model of the Atmosphere
Primitive equation GCM
with diabatic forcing
PUMA: History
PUMA is based on the multi-level spectral model SGCM (Simple Global
Circulation Model) described by Hoskins and Simmons (1975) and
James and Gray (1986).
B. J. Hoskins and A. J. Simmons. A multi-layer spectral model and the
semi-implicit method. Quart. J. Roy. Meteor. Soc., 101:637–655, 1975.
Major extensions in PUMA
Portable FORTRAN-90
Parallelization
MPI-library (Message Passing Interface library) to run PUMA on parallel
machines. PUMA is fully parallelized, as many CPU’s as latitudes (e.g. 32 in
T21 resolution).
Graphics
Xlib (X11R6) library needed for the graphical user interface
Truncation
The truncation scheme is standard triangular truncation, compatible to other
T-models like ECHAM.
Data
data compatible to ECHAM/Afterburner
PUMA and PlaSim-Atmosphere (also PUMA-II)
Hydrostatic primitive equations
Spectral, triangular truncation, n = 21, 31, 42, 85, 127, 170, …
Standard T21, T42, ..., higher resolutions tested
σ coordinates, N = 5, 10 levels
Integration
Vorticity: leap frog, Robert Asselin filter
Divergence: Semi-implicit (SGCM Hoskins and Simmons, 1975)
PUMA: Forcing by Restoration temperature
Diabatic heating with restoration temperature (‘Newtonian cooling’)
Restoration temperature (standard setup)
meridional gradient decreases with
height and vanishes at the
tropopause
Restoration temperature (°C)
standard parameters:
(ΔTR)EP = 70 K
(ΔTR)NS = 0 K
Friction and Hyperdiffusion
Linear drag (Rayleigh friction) in vorticity and divergence
τ level dependent
Hyperdiffusion
for a spectral mode γ
Scaling
Vertical Discretization (σ)
N = 5, 10, 20, ... levels
PUMA: validation of the dynamical core (Johan Liakka)
Planet Simulator
‘Earth System Model’
including atmosphere, ocean, and land
Atmosphere based on PUMA (‘PUMA-II’)
Some parameterizations are of intermediate complexity
Planet Simulator: Parameterizations
Surface fluxes bulk formulas
drag and transfer coefficents
Richardson number
Planet Simulator: Diffusion
Differences compared to PUMA
Vertical diffusion
Horizontal diffusion (n^2 diffusion above threshold)
Planet Simulator: Radiation
Short wave radiation
Clear sky (Lacis and Hansen, 1974)
Rayleigh scattering, ozone absorption, water vapor absorption,
absorption and scattering by aerosols (dust and cloud droplets)
Clouds
cloud liquid water path
Long wave radiation
Clear sky (Manabe and Möller, 1961)
Water vapor, carbon dioxide and ozone
Clouds
Gray bodies - or cloud flux emissivity from cloud liquid water content
Vertical discretization: Chou et al. (2002)
Additional Newtonian cooling
Possible to correct uppermost level
Planet Simulator: Precipitation and Clouds
Cumulus convection: Kuo-type convection scheme
Large scale precipitation for supersaturation
At the surface a distinction between rain and snow fall
Cloud cover and cloud liquid water content: diagnostic,
Slingo and Slingo (1991)
Dry convective adjustment (for dry adiabatically unstable layers)
Planet Simulator: land surface and soil
Soil
Temperature
N = 5 layers Δz = (0.4 m, 0.8 m, 1.6 m, 3.2 m, 6.4 m).
Hydrology
single-layer bucket model
river transport
Land surface
Albedo, Roughness length
glacier mask for permanent ice sheets
Evaporation efficiency
Biome model
optional
Planet Simulator: Ocean
Observed SST (AMIP)
Mixed layer ocean (Kraus, 1967; Dommenget and Latif, 2000)
LSG (Large scale geostrophic, Meier Reimer)
Sea ice model (thermodynamic), Semtner (1976)
Planet Simulator: Vegetation model
Biome model SIMBA
Includes vegetation impact on land surface parameters
Two carbon pools:
fast representing leaf area
slow: woody biomass
Vegetation cover
By surface temperature, soil moisture, and maximum LAI (2…6)
Impacts on
albedo, roughness length, latent heat flux
Planet Simulator: Climate report
Frank Lunkeit
Edilbert Kirk
Klaus Fraedrich
Kerstin Haberkorn
Frank Sielmann
Andrea Schneidereit
Planet Simulator: Zonally averaged zonal wind and air temperature
[m/s], [°C]
Planet Simulator: Mean sea level pressure
[hPa]
Planet Simulator: precipitation
[mm/season]
PUMA and Planet Simulator
Applications
and
References
PUMA and Planet Simulator: Design and validation
Fraedrich, K., H. Jansen, E. Kirk, U. Luksch, F. Lunkeit, 2005:
The Planet Simulator: Towards a user friendly model. - Meteorol. Z. 14, 299-304.
Kirk, E., K. Fraedrich, F. Lunkeit, and C. Ulmen, 2009: The Planet Simulator: A
coupled system of climate modules with real time visualization, CSPR report,
Linköping universitet, 45, Art. 7
Liakka, J., 2006: Validation of the dynamical core of the Portable University Model
of the Atmosphere (PUMA)
Blessing, S., R. J. Greatbatch, K. Fraedrich, and F. Lunkeit, 2008: Interpreting the
atmospheric circulation trend during the last half of the 20th century: Application of
an adjoint model. Journal of Climate, 21, 4629-4646
Frisius, T., K. Fraedrich, W. Wang, and X. Zhu, 2009: A spectral barotropic model
of the wind-driven world ocean. Ocean Modelling, 30, 310-322
PUMA and Planet Simulator: Dynamical systems analysis
Seiffert, R., R. Blender, and K. Fraedrich, 2006: Subscale forcing in a global
atmospheric circulation model and stochastic parameterisation. Quart. J. Roy.
Meteorol. Soc., 132, 1627-1654
Pèrez-Munuzuri, V., R. Deza, K. Fraedrich, T. Kunz, and F. Lunkeit, 2005:
Coherence resonance in an atmospheric global circulation model. Phys. Rev. E,
71, 065602(1-4)
Lunkeit, F, 2001: Synchronisation experiments with an atmospheric global
circulation model. Chaos, 11, 47-51.
Guerrieri, A., 2009: Estimate of the largest Lyapunov characteristic exponent of a
high dimensional atmospheric global circulation model. A sensitivity analysis.
ENEA - Clima Globale - Unità Simulazioni Atmosferiche Centro Ricerche
Casaccia, Roma
PUMA and Planet Simulator: Climate
Lucarini, V., K. Fraedrich, and F. Lunkeit, 2010: Thermodynamic analysis of snowball earth
hysteresis experiment: efficiency, entropy production, and irreversibility. Q. J. R. Meterol.
Soc., 136, 2-11
Walter, K., U. Luksch, and K. Fraedrich, 2001: A response climatology of idealised
midlatitude SST anomaly experiments with and without stormtrack. J. Climate, 14, 467-484
Lunkeit, F., K. Fraedrich, and S.E. Bauer, 1998: Storm tracks in a warmer climate: Sensitivity
studies with a simplified global circulation model. Climate Dynamics, 13, 813-826
Fraedrich, K., H. Jansen, E. Kirk, and F. Lunkeit, 2005b: The Planet Simulator: Green planet
and desert world. Meteorol. Zeitschrift, 14, 305-314.
Grieger, B., Segschneider, J. H. U. Keller, A. Rhodin, F. Lunkeit, E. Kirk, and K. Fraedrich,
2004: Simulating Titan's tropospheric circulation with the portable university model of the
atmosphere. Advances in Space Research, 34, 1650-1654
Stenzel, O., B. Grieger, H. U. Keller, R. Greve, K. Fraedrich, and F. Lunkeit, 2007: Coupling
Planet Simulator Mars, a general circulation model of the Martian atmosphere, to the ice
sheet model SICOPOLIS. Planetary and Space Science, 55, 2087-2096
PUMA and Planet Simulator: Processes
von Hardenberg, J., K. Fraedrich, F. Lunkeit, and A. Provenzale, 2000: Transient chaotic
mixing during a baroclinic life cycle. Chaos, 10, 122-134
Kunz, T., K. Fraedrich, and F. Lunkeit, 2009: Response of idealized baroclinic wave life
cycles to stratospheric flow conditions. J. Atmos. Sci., 66, 2288-2302
Kunz, T., K. Fraedrich, and E. Kirk, 2008: Optimisation of simplified GCMs using
circulation indices and maximum entropy production. Climate Dynamics, 30, 803-813.
Müller, W., R. Blender, and K. Fraedrich, 2002: Low frequency variability in idealised
GCM experiments with circumpolar and localised storm tracks. Nonlinear Processes
Geophys., 9, 37-49
Franzke, C., K. Fraedrich, and F. Lunkeit, 2001: Teleconnections and low frequency
variability in idealized experiments with two storm tracks. Q. J. R. Meteorol. Soc., 127,
1321-1339
Titelmasterformat durch Klicken bearbeiten
Thank
you * Cпасибо * Danke
16.07.2015