Transcript Quinolonas”
Latest antibiotic treatment on respiratory tract infections and respiratory tract infection pathogens Dr. Rafael Cantón Hospital Universitario Ramón y Cajal SERVICIO DE MICROBIOLOGÍA Y PARASITOLOGÍA Antibiotic therapy in community acquired infections: strategies for optimal outcomes and minimized resistance emergence Ball et al. J Antimicrob Chemother 2002; 49:31-40 Antibiotic use only in bacterial infections (!) Adequate the antimicrobial treatment strategy to - the etiology - local susceptibility profiles Attempt maximal reduction in bacterial load, with the ultimate aim of bacterial eradication Avoidance of selection processes Antibiotic used based in PK/PD (pharmacokinetic/ pharmacodynamic) knowledge These recommendations are not out of date… November, 18th Antibiotic therapy in community acquired infections: strategies for optimal outcomes and minimized resistance emergence Ball et al. J Antimicrob Chemother 2002; 49:31-40 Antibiotic use only in bacterial infections (!) Adequate the antimicrobial treatment strategy to - the etiology - local susceptibility profiles Attempt maximal reduction in bacterial load, with the ultimate aim of bacterial eradication Avoidance of selection processes Antibiotic used based in PK/PD (pharmacokinetic/ pharmacodynamic) knowledge These recommendations are not out of date… Respiratory tract infection pathogens Micro-organisms Acute Pneumonia Pathogenic colonization Exacerbation (COPD) Bronchiectasis + ++++ ++++ ++++ +++ ++ Staphylococcus aureus + + Pseudomonas aeruginosa + ++ Other NFGNB Mycoplasma pneumoniae +++ Chlamydophila pneumoniae ++ Legionella pneumophila + + Viruses ++ ++ ++ Haemophilus influenzae Streptococcus pneumoniae Respiratory tract infection pathogens S. pneumoniae H. influenzae M. catarrhalis M. pneumoniae C. pneumoniae L. pneumophila P. aeruginosa With resistance problems Without resistance problems RTI pathogens: Streptococcus pneumoniae Europe & North America - Decrease penicillin resistance but … emergence of very high level resistant clones (Pen≥ 8 mg/L) - Maintenance of erythromycin resistance rates but … increase of isolates with dual mechanisms [mef+erm(B)] - Low rates of fluoroquinolone resistance but… … emergence of specific resistant clones Asia - Maintenance of penicillin resistance (high level resistant clones) - Extremely high resistance rates to macrolides, including isolates with dual resistance mechanism - Low rates of fluoroquinolone resistance but emergence of specific resistant clones Cantón et al. Int J Antimicrob Agents. 2007; 30:546-50 Reinert et al. Clin Microbiol Infect 2009; 15 (Suppl 3):7-11 Streptococcus pneumoniae Invasive isolates Penicillin resistance (I+R) 2000 http://www.rivm.nl/earss/ 2008 S. pneumoniae Decrease of penicillin (I + R) resistance 2000 2008 I 21.6 15.7 R 11.0 7.1 TOTAL 32.6 22.8 SPAIN http://www.rivm.nl/earss/ RTI pathogens: Streptococcus pneumoniae Regional trends of penicillin resistance (PROTEKT Study) China, Hong Kong, Japan, South Korea and Taiwan 90 80 PISP PRSP Prevalence (%) 70 60 50 40 30 20 10 0 Y3 Y4 Y5 Y3 Y4 Y5 Australia Far East n = 657 n = 5155 Y3 Y4 Y5 Latin America n = 2889 Y3 Y4 Y5 North America n = 4155 Y3 Y4 Y5 Northern Europe n = 7170 Y3 Y4 Y5 Southern Europe n = 5479 Y3 Y4 Y5 South Africa n = 1611 Felmingham, Cantón, Jenkins. J Infec 2007; 55:111-8 RTI pathogens: Streptococcus pneumoniae Regional trends of erythromycin resistance (PROTEKT Study) China, Hong Kong, Japan, South Korea and Taiwan Prevalence of resistance (%) Prevalence (%) 90 80 70 60 50 40 30 20 10 0 Y3 Y4 Y5 Y3 Y4 Y5 Australia Far East n = 657 n = 5155 Y3 Y4 Y5 Latin America n = 2889 Y3 Y4 Y5 North America n = 4155 Y3 Y4 Y5 Northern Europe n = 7170 Y3 Y4 Y5 Southern Europe n = 5479 Y3 Y4 Y5 South Africa n = 1611 Felmingham, Cantón, Jenkins. J Infec 2007; 55:111-8 RTI pathogens: Streptococcus pneumoniae Antibacterial susceptibility prevalence (PROTEKT study) among penicillin-R (PRSP; n=1696) and erythromycin-R (ERSP; n=2638) S. pneumoniae 99.1 99.4 100 98.1 98.3 84.9 80 Susceptibility (%) 69.2 60 PRSP ERSP 34.4 40 29.0 21.8 21.8 21.9 20 0.2 ro xi m e ef u at e C 0.1 A m ox ic ill i n– c la v ul an ill in ni c Pe 0 Er yt hr om yc in A zi th ro m yc C in la rit hr om yc Te in lit hr om yc in Le vo flo xa ci n 0 0 0 Felmingham, Cantón, Jenkins. J Infec 2007; 55:111-8 RTI pathogens: Streptococcus pneumoniae Macrolide resistance mechanisms among erythromycin-R S. pneumoniae isolates collected in selected countries during the PROTEKT study Felmingham, Cantón, Jenkins. J Infec 2007; 55, 111e118 Dispersion of specific clonal complexes RTI pathogens: Streptococcus pneumoniae Resistance profiles in Shanghai (China) High penicillin and erythromycin resistance rates (2004-2005) High rate (42%) of isolates with dual erythromycin-R genes Absence of fluoroquinolone resistance Population structure: - 75% of the isolates belonging to 19F, 14, 23F, 6B and 19A serotypes - dispersion of international resistant clonal complexes: - Taiwan19F-14 - Spain23F-1, - Spain6B-2 - Taiwan23F-15 Yang et Int J Antimicrob Agenst Chemother 2008; 32:386-91 RTI pathogens: Streptococcus pneumoniae GLOBAL* Surveillance study Asia (n=564) Agent China (n=105) MIC90 (mg/L) S (%) MIC90 (mg/L) S (%) Penicillin 4 40.1 4 53.3 Amox-clavulanate >4 80.9 >4 84.8 Cefuroxime-axetil >4 46.5 >4 62.9 Ceftriaxone 2 74.1 2 81.0 Azithromycin >4 22.5 >4 10.5 Levofloxacin 1 98.0 1 99.0 Trimeth-sulfa >4 38.3 >4 26.7 CLSI breakpoints (M100-S17) *Global Landscape On the Bactericidal Activity of Levofloxacin RTI pathogens: Haemophillus influenzae GLOBAL* Surveillance study Asia (n=497) Agent China (n=138) MIC90 (mg/L) S (%) MIC90 (mg/L) S Ampicillin >8 69.4** 1 92.8 Amox-clavulanate 2 99.6 1 92.8 Cefuroxime-axetil >4 98.4 1 62.9 ≤0.015 100 ≤0.015 100 Clarithromycin 16 67.8 16 62.3 Azithromycin 2 99.8 4 99.3 Levofloxacin 0.03 99.6 0.03 100 Trimeth-sulfa >4 52.7 >4 46.4 Ceftriaxone CLSI breakpoints (M100-S17): **29.8% β-lactamase (+); 0.8 amp-R β-lactamase (-) *Global Landscape On the Bactericidal Activity of Levofloxacin RTI pathogens: Pseudomonas aeruginosa GLOBAL* Surveillance study Asia (n=144) Agent S (%) Piper/tazb 76.8 Ceftazidime 68.7 Imipenem 75.7 Amikacin 88.2 Levofloxacin 77.1 Ciprofloxacin 71.5 CLSI breakpoints (M100-S17) *Global Landscape On the Bactericidal Activity of Levofloxacin Antibiotic therapy in community acquired infections: strategies for optimal outcomes and minimized resistance emergence Ball et al. J Antimicrob Chemother 2002; 49:31-40 Antibiotic use only in bacterial infections (!) Adequate the antimicrobial treatment strategy to - the etiology - local susceptibility profiles Attempt maximal reduction in bacterial load, with the ultimate aim of bacterial eradication Avoidance of selection processes Antibiotic used based in PK/PD (pharmacokinetic/ pharmacodynamic ) knowledge These recommendations are not out of date… Bacterial inoculum and RTI Why is so important the reduction of the bacterial load or the bacterial erradication for the clinical outcome in RTI? … the acute exacerbation of chronic bronchitis model Sethi and Murphy. Clin Microbiol Rew 2001; 14:336-63 Miravitlles. Eur Respir J 2002; 20 (Suppl 36):9-19 Mensa & Trilla Clin Microbiol Infect 2006; (Suppl 3):42-54 Bacterial inoculum and RTI Vicious Cycle Mensa & Trilla Clin Microbiol Infect 2006; (Suppl 3):42-54 Bacterial inoculum and RTI Failure in bacterial eradication determines clinical failure in AECB % of clinical failure Meta-analysis: 12 studies, 16 antibiotics R=0.83 Rate of eradication failure Pechère. Infect Med1998;15 (Suppl E): 46–54 Bacterial load and FEV1 decline in AECB 30 COPD patients with 1 year of lung function follow-up Sputum sampling at the beginning and the end of the study increase in bacterial load (107.47 cfu/ml to 107.93 cfu/ml, p=0.019) decline in pulmonary function (FEV1) (p=0.001) Wilkinson et al. Am J Resp Crit Care Med 2003; 167:1090-5 Bacterial inoculum in RTI Why is so important erradication for the clinical outcome? the bronchitis exacerbation model Acute exacerbation resolution antibiotic treatment Low bacterial load (susceptible) natural resistant mutants (10-8) High bacterial load (susceptible) Decrease of neutrophil inflammation Decrease of bacterial load Decrease of bacterial injury Decline in pulmonary function Recurrent exacerbation status antibiotic treatment Selection of resistant mutant Increase of bacterial injury Increase the risk of resistance Increase of bacterial variation Antibiotic therapy in community acquired infections: strategies for optimal outcomes and minimized resistance emergence Ball et al. J Antimicrob Chemother 2002; 49:31-40 Antibiotic use only in bacterial infections (!) Adequate the antimicrobial treatment strategy to - the etiology - local susceptibility profiles Attempt maximal reduction in bacterial load, with the ultimate aim of bacterial eradication Avoidance of selection processes Surpass the MPCs Antibiotic used based in PK/PD (pharmacokinetic/ pharmacodynamic ) knowledge These recommendations are not out of date… Antibiotic resistance: mutational events A natural resistant population (resistant mutants) is always present (frequency of mutation) in all bacterial populations The number of resistant mutants increases with the inoculum bacterial inoculum susceptible bacteria resistant bacteria Under antibiotic pressure the susceptible subpopulation is inhibited and the resistant mutants can survive and become dominant within the population (selection) antibiotic The resistant subpopulation may emerge under the action of an antimicrobial agent due to the inhibition of the susceptible population if the susceptible bacteria ( ) are inhibited by a concentration which is lower than that of necessary to inhibit the resistant subpopulation ( )… … a concentration able to inhibit both susceptible and resistant populations can be defined MPC (mutant prevention concentration) - a concentration which is able to inhibit the resistant subpopulation … and also can inhibit the susceptible population - concentration that prevents the emergence of resistance mutants - MIC of the resistant population Mutant prevention concentration and window of selection Baquero & Negri. BioEssays 1997; 19: 731-6 Drlica K. ASM News 2001; 67:27-33 Cantón et al. Inter J Antimicrob Chemother 2006; 28 (Suppl 2):S115-27 S. pneumoniae, mutant prevention concentration (MPC) Potential for restricting the selection of resistant mutants moxifloxacin 45 % of isolates > 45 gatifloxacin % of isolates > 45 40 putative parC mutations 40 40 35 null parC mutations 35 35 30 unsequenced isolates 30 30 25 25 25 20 20 20 15 15 15 10 10 10 5 5 5 0 0 0 .06 0.1 0.2 0.5 1 2 4 8 MPC (µg/ml) 16 32 64 128 .06 0.1 0.2 0.5 1 2 4 8 MPC (µg/ml) 16 32 64 128 levofloxacin % of isolates .06 0.1 0.2 0.5 1 2 4 8 16 32 64 128 MPC (µg/ml) Blondeau et al. Antimicrob Agents Chemother 2001; 45:433-8 This data should be analyzed with pharmacokinetic data Streptocccus pneumoniae Plasma and intrapulmonary concentrations of levofloxacin 45 % of isolates 40 putative parC mutations 35 null parC mutations 30 unsequenced isolates Compartment 500 mg 750 mg Plasma 5.29 11.98 ELF 9.94 22.12 AMs 97.90 105.10 25 20 15 10 5 Concentrations of levofloxacin at 4h after administration ELF: epithelial lining fluid AM: alveolar macrophages 0 .06 0.1 0.2 0.5 1 2 4 8 16 32 64 128 MPC (µg/ml) Blondeau et al. Antimicrob Agents Chemother 2001; 45:433-8 Gotfried et al. Chest 2001; 119:1114-22 S. pneumoniae – MPC and pharmacokinetics of different fluoroquinolones 100 MIC MPC µg/ml 10 Compartment 1 0,1 0,01 Pen-S Pen-I Pen-R MOXIFLOXACIN Pen-S Pen-I Pen-R Pen-S Pen-I Pen-R GATIFLOXACIN LEVOFLOXACIN Hernsen et al. Antimicrob Agents Chemother 2005; 49:1633-35 Concentrations of levofloxacin at 4h after administration 500 mg 750 mg Plasma 5.29 11.98 ELF 9.94 22.12 AMs 97.90 105.10 ELF: epithelial lining fluid AM: alveolar macrophages Gotfried et al. Chest 2001; 119:1114-22 P. aeruginosa – mutant prevention concentration (MPC) LEVO CIPRO García-Castillo et al. (n=14) Hansen et al. (n=151) García-Castillo et al. (n=14) Hansen et al (n=151) MIC (µg/ml) range mode 0.06-0.5 0.25 MPC (µg/ml) range mode 0-5-8 8 0.12-8 1.3* 2-64 8 0.03-0.12 0.12 0.25-8 2 0.06-4 0.4* 0.5-32 2 *mean value García-Castillo, Morosini, Baquero, Oliver, Baquero, Cantón. 15th ECCMID, Prague, 2004 Hansen et al. Int J Clin Microbiol Infect Dis 2006; 27: 120-140 P. aeruginosa: fluoroquinolone MPCs and ELF concentrations 1000 LEVOFLOXACIN µg/ml 100 22.1 µg/ml (750 mg/24h) 17.8 µg/ml (500 mg/12h) 9.9 µg/ml (500 mg/24h) 10 1 0.1 0.01 MPC MIC 1000 CIPROFLOXACIN µg/ml 100 Epithelial lining fluid concentration (ELF) Gotfried et al. Chest 2001; 119:1114-22 Boselli et al. Crit Care Med 2005; 33:104-9 10 2.3 µg/ml (750 mg/24h) 1.8 µg/ml (500 mg/12h) 1 0.1 0.01 strains García-Castillo, Morosini, Baquero, Oliver, Baquero, Cantón. 15th ECCMID, Prague, 2004 Antibiotic therapy in community acquired infections: strategies for optimal outcomes and minimized resistance emergence Ball et al. J Antimicrob Chemother 2002; 49:31-40 Antibiotic use only in bacterial infections (!) Adequate the antimicrobial treatment strategy to - the etiology - local susceptibility profiles Attempt maximal reduction in bacterial load, with the ultimate aim of bacterial eradication Avoidance of selection processes Antibiotic used based in PK/PD (pharmacokinetic/ pharmacodynamic ) knowledge These recommendations are not out of date… PK / PD parameters of clinical efficacy Concentration Cmax Aminoglycosides Fluoroquinolones Cmax : MIC Tetracyclines Glicopeptides AUC : MIC t1/2 Fluoroquinolones MIC Texposition Beta-lactams Macrolides Linezolid tmax Time • PK/PD breakpoints: the highest MIC for which the antimicrobial drug concentrations (at a defined dose) are sufficient to achieve the PK/PD target against a specific organism and for which clinical data support their use Metlay et al. Emerg Infect Dis 2006; 12:183-190 Fluoroquinolones Target (AUC:MIC) attainment values for ciprofloxacin and levofloxacin and different pathogens Dose 200 mg/12 h or 400 mg/8h i.v. Ciprofloxacin 500 mg/12 h oral or 400 mg/12 h iv Levofloxacin 750 mg/24 h i.v. 500 mg/24 h oral P. aeruginosa Enterobacteriaceae S. pneumoniae 125 34 87 33.5-33.7 Forrest et al. Antimicrob Agents Chemother 1993; 37:1073-81; Preston et al. JAMA 1998; 279:125-9 Ambrose et al. Antimicrobial Agents Chemother 2001; 45:2793-7 Ambrose et al. Infect Dis Clin North Am 2003; 17:529-43 Higher doses favors target PK/PD attainment despite MIC increase AUC:MIC Levofloxacin and S. pneumoniae AUC:MIC Levofloxacin MIC (µg/ml) Levofloxacin Levofloxacin 500 mg dose 750 mg dose 1.4 33 49 1.8 29 43 3.2 18 27 2.6 14 22 CMI 3.2 2.6 1.8 1.4 In vitro pharmacokinetic simulated model Lister PD. Diagn Microbiol Infect Dis 2002; 44:43-9 Susceptibility rates (recent surveillance studiesa) among respiratory pathogens based on PK/PD breakpoints a: SENTRY, ARISE, Alexander Project, Protekt Canut et al. J Antimicrob Chemother 2007; 60:607-12 Antibiotic therapy in community acquired infections: strategies for optimal outcomes and minimized resistance emergence Ball et al. J Antimicrob Chemother 2002; 49:31-40 Antibiotic use only in bacterial infections (!) Adequate the antimicrobial treatment strategy to - the etiology - local susceptibility profiles Attempt maximal reduction in bacterial load, with the ultimate aim of bacterial eradication Avoidance of selection processes Antibiotic used based in PK/PD (pharmacokinetic/ pharmacodynamic ) knowledge Which is the influence of these recommendations on current antimicrobial guideline for RTI infections Antimicrobial guidelines for RTI: CAP & AECB Evidence- or consensus-based guidelines1 Adapted to - suspected or demonstrated pathogen - severity of illness and co-moribities - previous antibiotic use2 Often recommend broad-spectrum agents but recent work in antibiotic stewardship promotes narrow-spectrum agents3,4 Not yet completely updated with recent Pk/Pd knowledge and current resistance trends (should be locally revised) 1Blasi et al. Pulm Pharm & Therap 2006; 361-9 et al. Clin Infec Dis 2007; 44:S27-72 3Dryden et al. J Antimicrob Chemoter 2009; 64:1123-5 4Lim et al. Thorax 2009; 24 (Suppl 3):iii1-55 2Mandel Antimicrobial guidelines for RTI Community acquired pneumonia (British Thoracic Society) Severity Treatment site Low Home Hospital First line treatment Alternative treatment Amoxicillin Doxycicline Moderate Hospital Amoxicillin + clarithromycin Doxycicline High Amox/clavulanic Penicilin + levofloxacin or ciprofloxacin Hospital (including ICU) Cefuroxime or cefotaxime + clarithromycin Lim et al. Thorax 2009; 64 (Suppl 3): iii1-55 Antimicrobial guidelines for RTI Community acquired pneumonia (Japanese Respiratory Society) Outpatient Amoxicillin Penicillin + β-inhibitor Inpatient Penicillin (iv) Cephems (iv) Outpatient Macrolides Tetracyclines Outpatient Amoxicillin High doses Inpatient Minocycline (iv) Macrolides Inpatient Penicillin (iv) Cephems (iv) Carbapenems Adpated to speficic pathogen Carbapanems (iv) + new quinolone (iv) or macrolide (iv) Minoclycline (ivi) MaDOI: 10.2169/internalmedicine.45.1691 Antimicrobial guidelines for RTI Community acquired pneumonia (ATS/IDSA) Patient Outpatient Treatment Previously healthy Macrolides or doxycycline Comorbidities Fluoroquinolone Regions with ↑ macrolideR β-lactam + macrolides Inpatients Non-ICU Fluoroquinolone or β-lactam + macrolide ICU β-lactam + macrolide or fluoroquinolone Specific pathogens P. aeruginosa CA-MRSA antipneumococcal-antipseudomonal β-lactam + fluoroquinolone or β-lactam + aminoglycoside + macrolide + vancomycin or linezolid Mandel et al. Clin Infec Dis 2007; 44:S27-72 Antimicrobial guidelines for RTI Exacerbation of COPD (GLOD*) Group A: Patients not requiring hospitalization (Stage I-Mild COPD) Group B & C: Patients addmitted to hospital (Stage II-IV: moderate to very severe COPD) Global Initiative for Chronic Obstructive Lung Disease. http://www.goldcopd.com/ 2005 Respiratory tract infections: CAP & AECB Conclusions Variable resistance rates in different geographic locations with extremely high levels in some of these areas (i.e. macrolides in S. pneumoniae in Asia, including China) Effective antimicrobial treatments should determine bacterial eradication (CAP) or maximal reduction in bacterial load (AECB) Reduction of resistance development can be achieved with high doses (surpass MPCs and avoidance of window of selection) Current antimicrobial guidelines should incorporate and be updated with current Pk/Pd knowledge and Pk/Pd breakpoints Latest antibiotic treatment on respiratory tract infections and respiratory tract infection pathogens Dr. Rafael Cantón Hospital Universitario Ramón y Cajal SERVICIO DE MICROBIOLOGÍA Y PARASITOLOGÍA Fluoroquinolones 1st generation “old” Nalidixic acid 2nd generation “classic” Norfloxacin 3rd/4th generation “new” Sparfloxacin Oxolinic acid Pefloxacin Levofloxacin Pipemidic acid Enoxacin Grepafloxacin Cinoxacin Fleroxacin Gatifloxacin Rosoxacin Tosufloxacina Moxifloxacin Temafoxacin Trovafloxacin Ciprofloxacin Clinafloxacin Ofloxacin Sitafloxacin Gemifloxacin Garenoxacin ……………….. Fluoroquinolones: spectrum of activity Activity of different quinolones against Group Enterobact. S. aureus S. pneumoniae H. influenzae Atypical pathogens P. aeruginosa Anaerobes 1st generation + - - - - - Norfloxacin ++ + ++ + + - Pefloxacin ++ + ++ ++ + - Ciprofloxacin ++++ ++ ++++ +++ ++++ + Ofloxacin +++ ++ ++++ +++ ++ + Sparfloxacin ++ +++ +++ ++++ ++ + Levofloxacin +++ ++++ ++++ +++ +++ + Gatifloxacin +++ ++++ ++++ ++++ +++ ++ Moxifloxacin +++ ++++ ++++ ++++ ++ ++ Nalidixic acid 2nd generation 3rd/4th generation quinolonic ring ciprofloxacin levofloxacin moxifloxacin garenoxacin Levofloxacin A well-balanced fluroquinolone … - antimicrobial activity - pharmacokinetic/ pharmacodynamic parameters - adverse effects Antimicrobial use… Antibiotic PK - PD Pharmacokinetics Absorption Distribution Metabolism Excretion Effect • • • • Effect vs time Clinical efficacy Time Pharmacodynamics • Spectrum of activity • Bactericidal activity - Time-dependency - Concentrationdependency Resistance avoidance Pharmacokinetics of fluoroquinolones Ciprofloxacin (750 mg bid) Levofloxacin (500 mg od) Moxifloxacin (400 mg od) Gatifloxacin (400 mg od) Bioavailability 70 99 86 96 Serum Cmax 3.5 6.0 4.5 3.4 Protein binding 25 25 50 18 Vdss (L/Kg) 3.2 1.5 2.7 1.7 T1/2 (h) 4.0 6.0 12.7 8.4 AUC (mg.h/ml) 29 58 48 32 Clrenal (ml/min) 250 190 43 60 95 20 % renal 90 Yu et al. Antimicrobial Therapy & Vaccines. 2005 (2nd ed) Pharmacokinetics of fluoroquinolones Steady-state concentrations (at 4 h after last dose of 5 days) Steady-state concentrations (mg/ml) 30 Plasma 25 Epithelial lining fluid 20 15 10 5 0 CIP-500 bid LFX-500 od LFX-750 od Healthy adults Gotfried et al. Chest 2001; 119:1114-1122 MOX 400 od LFX-500 od Elderly patients Capitano et al. Chest 2004; 125:965-73 Pharmacokinetics of fluoroquinolones Steady-state concentrations (mg/ml) Steady-state concentrations (at 4 h after last dose of 5 days) 100 Macrophagues 80 60 40 20 0 CIP-500 bid LFX-500 od LFX-750 od Healthy adults Gotfried et al. Chest 2001; 119:1114-22 MOX 400 od LFX-500 od Elderly patients Capitano et al. Chest 2004; 125:965-73 Pharmacokinetics of fluoroquinolones Levofloxacin: optimal bioavailability for sequential therapy Furlanut et al. J Antimicrob Chemother 2003; 51:101-6 Levofloxacin pharmacokinetics Ratio to serum Penetration of levofloxacin in different compartments accumulation of levofloxacin in most compartments results in concentrations 10-50-fold greater than the mean MIC of most potential pathogens 1Gotfried Macrophages Liver Prostate Sinus Epithelial lining fluid Gall bladder Pleural fluid Synovial fluid Diabetic foot Bone Aqueous humor CSF 18.51 3.72 2.93 2.54 1.81 1.85 1.35 1.26 >17 16 0.38 0.39 et al. Chest 2001; 119:1114-22; 2Weinrich et al. IJAA 2006; 28:221-5; 3 Drusano et al. AAC 2000; 2046-51; 4Pea et al. PR 2007; 55:38-41; 5Swoboda et al. JAC 2003; 51:459-62; 6Rimmele et al. JAC 2004; 533-5; 7Oberdorfer et al. 2004; 54:836-9; 8García-Vázquez et al. EJCMID 2007; 26:137-40; 9Scotton et al. CID 2001; 33:e109-11 Levofloxacin The big issue ... - 500 mg / 24 h versus 500 mg / 12 h bid or 750 mg / 24 h The answers? ... - PK/PD - resistant development avoidance Levofloxacin pharmacokinetics Epithelial lining fluid/plasma concentration ratio (750 mg/24 h orally 5 days) Montecarlo simulation Drussano et al. Antimicrob Agents Chemother 2002; 46: 586-9 Levofloxacin Steady-state concentrations (after 2 days of therapy) in critically ill patients with severe community-acquired pneumonia Levofloxacin 500 mg (od) (bid) Plasma Cmax (mg/L) 12.6 19.7 T1/2 (h) 11.5 17.0 AUC (mg.h/ml) 151 208 11.9 17.8 ELF Cmax (mg/L) Bosselli et al. Crit Care Med 2005; 33:104-9 Ciprofloxacin Ciprofloxacin (200 mg/12 h – 400 mg/8 h i.v.) clinical and microbiological outcome in critically ill ICU patients with Gram negative infections AUC : MIC >125 100 *number of patients 16 7 22 % of cures 80 60 9* 40 10 20 0 0-62.5 62.5-125 Clinical cure 125-250 250-500 500-5,541 Microbiological cure Forrest et al. Antimicrob Agents Chemother 1993; 37:1073-81 Levofloxacin Levofloxacin (500 mg/24 h) clinical and microbiological outcomes in patients with community acquired S. pneumoniae respiratory tract infection AUC : MIC >33.7 100 % of cures 80 60 40 20 0 21-30 31-40 41-100 110-150 151-200 201-250 251-300 301-350 Clinical cure >350 Microbiological cure Ambrose et al. Antimicrob Agents Chemother 2001; 45:2793-7 Levofloxacin Probability of target attainment (AUC:MIC >33.7) for levofloxacin (500 mg/24 h, orally) in patients with community acquired Streptococcus pneumoniae respiratory tract infections Classification and Regression Tree (CART) analysis Ambrose et al. Antimicrob Agents Chemother 2001; 45:2793-7