No Slide Title

Download Report

Transcript No Slide Title

Chapter 4
Wafer Manufacturing
and Epitaxy Growing
Hong Xiao, Ph. D.
[email protected]
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
1
Objectives
•
•
•
•
•
•
Give two reasons why silicon dominate
List at least two wafer orientations
List the basic steps from sand to wafer
Describe the CZ and FZ methods
Explain the purpose of epitaxial silicon
Describe the epi-silicon deposition process.
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
2
Crystal Structures
• Amorphous
– No repeated structure at all
• Polycrystalline
– Some repeated structures
• Single crystal
– One repeated structure
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
3
Amorphous Structure
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
4
Polycrystalline Structure
Grain
Boundary
Grain
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
5
Single Crystal Structure
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
6
Why Silicon?
• Abundant, cheap
• Silicon dioxide is very stable, strong
dielectric, and it is easy to grow in thermal
process.
• Large band gap, wide operation temperature
range.
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
7
Name
Silicon
Symbal
Si
Atomic number
14
Atomic weight
28.0855
Discoverer
Jöns Jacob Berzelius
Discovered at
Sweden
Discovery date
1824
Origin of name
From the Latin word "silicis" meaning "flint"
Bond length in single crystal Si
2.352 Å
Density of solid
2.33 g/cm3
Molar volume
12.06 cm3
Velocity of sound
2200 m/sec
Electrical resistivity
100,000 cm
Reflectivity
28%
Melting point
1414 C
Boiling point
2900 C
Hong Xiao, Ph. D.
Source:
www2.austin.cc.tx.us/HongXiao/Boo
http://www.shef.ac.uk/chemistry/web-elements/nofr-key/Si.html
k.htm
8
Unit Cell of Single Crystal Silicon
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
9
Crystal Orientations: <100>
z
<100> plane
y
x
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
10
Crystal Orientations: <111>
z
<111> plane
<100> plane
y
x
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
11
Crystal Orientations: <110>
z
<110> plane
y
x
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
12
<100> Orientation Plane
Basic lattice cell
Hong Xiao, Ph. D.
Atom
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
13
<111> Orientation Plane
Basic lattice cell
Hong Xiao, Ph. D.
Silicon atom
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
14
<100> Wafer Etch Pits
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
15
<111> Wafer Etch Pits
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
16
Illustration of the Defects
Impurity on substitutional site
Silicon Atom
Impurity in
Interstitial Site
Silicon
Interstitial
Vacancy or Schottky Defect
Hong Xiao, Ph. D.
Frenkel Defect
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
17
Dislocation Defects
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
18
From Sand to Wafer
•
•
•
•
•
•
Quartz sand: silicon dioxide
Sand to metallic grade silicon (MGS)
React MGS powder with HCl to form TCS
Purify TCS by vaporization and condensation
React TCS to H2 to form polysilicon (EGS)
Melt EGS and pull single crystal ingot
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
19
From Sand to Wafer (cont.)
•
•
•
•
Cut end, polish side, and make notch or flat
Saw ingot into wafers
Edge rounding, lap, wet etch, and CMP
Laser scribe
• Epitaxy deposition
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
20
From Sand to Silicon
Heat (2000 C)
SiO2
Sand
Hong Xiao, Ph. D.
+

C
Carbon
Si
MGS
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
+
CO2
Carbon Dioxide
21
Silicon Purification I
Hydrochloride
Si + HCl
 TCS
Reactor,
300 C
Silicon
Powder
Condenser
Filters
Purifier
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
Pure TCS with
99.9999999%
22
Polysilicon Deposition, EGS
Heat (1100 C)
SiHCl3
TCS
Hong Xiao, Ph. D.
+
H2
Hydrogen

Si
+
EGS
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
3HCl
Hydrochloride
23
Silicon Purification II
H2
Process
Chamber
EGS
H2 and TCS
Liquid
TCS
TCS+H2EGS+HCl
Carrier gas
bubbles
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
24
Electronic Grade Silicon
Source: http://www.fullman.com/semiconductors/_polysilicon.html
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
25
Crystal Pulling: CZ method
Single Crystal Silicon Seed
Quartz Crucible
Single Crystal
silicon Ingot
Molten Silicon
1415 °C
Heating Coils
Graphite Crucible
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
26
CZ Crystal Pullers
Mitsubish Materials Silicon
Source: http://www.fullman.com/semiconductors/_crystalgrowing.html
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
27
CZ Crystal Pulling
Source: http://www.fullman.com/semiconductors/_crystalgrowing.html
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
28
Floating Zone Method
Poly Si
Rod
Heating Coils
Movement
Molten Silicon
Heating
Coils
Single Crystal
Silicon
Seed Crystal
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
29
Comparison of the Two Methods
• CZ method is more popular
– Cheaper
– Larger wafer size (300 mm in production)
– Reusable materials
• Floating Zone
– Pure silicon crystal (no crucible)
– More expensive, smaller wafer size (150 mm)
– Mainly for power devices.
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
30
Ingot Polishing, Flat, or Notch
Flat, 150 mm and smaller
Hong Xiao, Ph. D.
Notch, 200 mm and larger
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
31
Wafer Sawing
Coolant
Orientation
Notch
Crystal Ingot
Saw Blade
Ingot
Movement
Diamond Coating
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
32
Parameters of Silicon Wafer
Wafer Size (mm)
50.8 (2 in)
76.2 (3in)
100
125
150
200
300
Hong Xiao, Ph. D.
Thickness (m)
279
381
525
625
675
725
775
Area (cm 2)
20.26
45.61
78.65
112.72
176.72
314.16
706.21
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
Weight (grams)
1.32
4.05
9.67
17.87
27.82
52,98
127.62
33
Wafer Edge Rounding
Wafer
Wafer movement
Wafer Before Edge Rounding
Wafer After Edge Rounding
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
34
Wafer Lapping
•
•
•
•
Rough polished
conventional, abrasive, slurry-lapping
To remove majority of surface damage
To create a flat surface
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
35
Wet Etch
• Remove defects from wafer surface
• 4:1:3 mixture of HNO3 (79 wt% in H2O),
HF (49 wt% in H2O), and pure CH3COOH.
• Chemical reaction:
3 Si + 4 HNO3 + 6 HF  3 H2SiF6 + 4 NO + 8 H2O
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
36
Chemical Mechanical Polishing
Pressure
Slurry
Wafer
Wafer Holder
Polishing Pad
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
37
200 mm Wafer Thickness and
Surface Roughness Changes
76 m
After Wafer Sawing
914 m
76 m
914 m
After Edge Rounding
After Etch
12.5 m
814 m
<2.5 m
750 m
After CMP
Virtually Defect Free
725 m
After Lapping
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
38
Epitaxy Grow
•Definition
•Purposes
•Epitaxy Reactors
•Epitaxy Process
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
39
Epitaxy: Definition
• Greek origin
• epi: upon
• taxy: orderly, arranged
• Epitaxial layer is a single crystal layer on a
single crystal substrate.
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
40
Epitaxy: Purpose
• Barrier layer for bipolar transistor
– Reduce collector resistance while keep high
breakdown voltage.
– Only available with epitaxy layer.
• Improve device performance for CMOS and
DRAM because much lower oxygen,
carbon concentration than the wafer crystal.
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
41
Epitaxy Application, Bipolar
Transistor
Emitter
p+
n+
Base
p
Collector
Al•Cu•Si
SiO2
n+
n-Epi
p+
Electron flow
n+ Buried Layer
P-substrate
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
42
Epitaxy Application: CMOS
Metal 1, Al•Cu
W
STI
BPSG
n+
n+
P-Well
USG
p+
p+
N-Well
P-type Epitaxy Silicon
P-Wafer
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
43
Silicon Source Gases
Silane
SiH4
Dichlorosilane
DCS
SiH2Cl2
Trichlorosilane
TCS
SiHCl3
Tetrachlorosilane
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
SiCl4
44
Dopant Source Gases
Diborane
B2H6
Phosphine
PH3
Arsine
AsH3
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
45
DCS Epitaxy Grow, Arsenic Doping
Heat (1100 C)
SiH2Cl2

DCS
Hydrochloride
Si
+
2HCl
Epi
Heat (1100 C)
AsH3
Hong Xiao, Ph. D.
As
+
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
3/2 H2
46
Schematic of DCS Epi Grow and
Arsenic Doping Process
SiH2Cl2
AsH3
H2
HCl
Si
AsH3
As
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
H
47
Epitaxial Silicon Growth Rate Trends
Temperature (°C)
1300 1200 1100 1000
1.0
900
800
700
0.5
0.2
SiH4
Mass transport
limited
0.1
SiHCl3
0.05
0.02
Surface reaction limited
SiH2Cl2
0.01
0.7
Hong Xiao, Ph. D.
0.8
0.9
1000/T(K)
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
1.0
1.1
48
Barrel Reactor
Radiation
Heating
Coils
Hong Xiao, Ph. D.
Wafers
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
49
Vertical Reactor
Wafers
Heating
Coils
Reactants
Reactants and
byproducts
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
50
Horizontal Reactor
Heating Coils
Wafers
Reactants
Reactants and
byproducts
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
51
Epitaxy Process, Batch System
•
•
•
•
•
•
Hydrogen purge, temperature ramp up
HCl clean
Epitaxial layer grow
Hydrogen purge, temperature cool down
Nitrogen purge
Open Chamber, wafer unloading, reloading
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
52
Single Wafer Reactor
•Sealed chamber, hydrogen ambient
•Capable for multiple chambers on a mainframe
•Large wafer size (to 300 mm)
•Better uniformity control
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
53
Single Wafer Reactor
Heat
Radiation
Heating Lamps
Wafer
Reactants
Reactants &
byproducts
Susceptor
Hong Xiao, Ph. D.
Quartz
Lift
Fingers
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
Quartz
Window
54
Epitaxy Process, Single Wafer
System
•
•
•
•
Hydrogen purge, clean, temperature ramp up
Epitaxial layer grow
Hydrogen purge, heating power off
Wafer unloading, reloading
• In-situ HCl clean,
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
55
Why Hydrogen Purge
•
•
•
•
•
•
Most systems use nitrogen as purge gas
Nitrogen is a very stable abundant
At > 1000 C, N2 can react with silicon
SiN on wafer surface affects epi deposition
H2 is used for epitaxy chamber purge
Clean wafer surface by hydrides formation
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
56
Properties of Hydrogen
Name
Symbol
Atomic number
Atomic weight
Discoverer
Discovered at
Discovery date
Origin of name
Molar volume
Velocity of sound
Refractive index
Melting point
Boiling point
Thermal conductivity
Hong Xiao, Ph. D.
Hydrogen
H
1
1.00794
Henry Cavendish
England
1766
From the Greek words "hydro" and "genes" meaning
"water" and "generator"
11.42 cm3
1270 m/sec
1.000132
-258.99 C
-252.72 C
0.1805 W m-1 K-1
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
57
Defects in Epitaxy Layer
Stacking Fault from
Surface Nucleation
Dislocation
Stacking Fault form
Substrate Stacking Fault
Impurity Particle
Hillock
Epi Layer
Substrate
After S.M. Zse’s VLSI Technology
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
58
Future Trends
•
•
•
•
•
Larger wafer size
Single wafer epitaxial grow
Low temperature epitaxy
Ultra high vacuum (UHV, to 10-9 Torr)
Selective epitaxy
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
59
Summary
• Silicon is abundant, cheap and has strong,
stable and easy grown oxide.
• <100> and <111>
• CZ and floating zone, CZ is more popular
• Sawing, edging, lapping, etching and CMP
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
60
Summary
• Epitaxy: single crystal on single crystal
• Needed for bipolar and high performance
CMOS, DRAM.
• Silane, DCS, TCS as silicon precursors
• B2H6 as P-type dopant
• PH3 and AsH3 as N-type dopants
• Batch and single wafer systems
Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Boo
k.htm
61