Transcript Slide 1
Aim: How can we calculate the energy of a spring? HW #33 due tomorrow Do Now: An object is thrown straight up. At the maximum height, it has a potential energy of 300 J. How much work did it take to do this? 300 J (Work – Energy Relationship) Convert the mass into kg and calculate the weight: distance mass (g) mass (kg) weight (N) stretched (cm) 50 0.050 0.49 250 0.250 2.45 450 0.450 4.41 650 0.650 6.37 850 0.850 8.33 Plot the data Force or weight (N) 10 9 8 7 6 5 4 3 2 Your graph should be a straight line similar to this one! 1 0 Distance stretched (cm) Calculate the slope of your graph Hooke’s Law F = Force or weight applied (N) F = kx k = Spring constant (N/m) Each spring has a different value (slinky – low k) (shocks in car – high k) *show springs* x = Distance stretched or compressed from equilibrium (m) Robert Hooke 1635-1703 Problems 1. A 4 N weight is hung from a spring causing it to stretch a distance of 0.16 m. What is the spring constant? F = kx 4 N = k(0.16 m) k = 25 N/m Next Problem 2. A 5 kg mass is hung from the same spring. How far does it stretch? F = kx mg = kx (5 kg)(9.8 m/s2) = (25 N/m)x x = 1.96 m Elastic Potential Energy •The energy stored in a spring or any other elastic item (i.e. – rubberband) •Represented as PEs Slinky Commercail •PEs = ½kx2 •On a F-x graph: Area = PEs F x Ace Ventura – Slinky Scene Problems 1. A spring with a constant of 30 N/m stretches 0.5 m. What is its elastic potential energy? PEs = ½kx2 PEs = ½(30 N/m)(0.5 m)2 PEs = 3.75 J Next Problem 2. A spring with a constant of 40 N/m has 12 J of elastic potential energy. How far has it stretched? PEs = ½kx2 12 J = ½(40 N/m)x2 x = 0.77 m Force or weight (N) Solve for the elastic potential energy PEs = area under curve 70 PEs = ½bh PEs = ½(2 m)(70 N) PEs = 70 J 2 Distance stretched (m) Conservation of Energy An 80 kg girl jumps on a trampoline with 1000 J of elastic potential energy stored in the springs. How high with she go? PEs = PE PEs = mgh 1000 J = (80 kg)(9.8 m/s2)h h = 1.3 m Conservation of Energy A 100 kg object is connected to a spring with a spring constant of 5,000 N/m and is compressed a distance of 0.75 m. How fast will the object travel when released? PEs = KE ½kx2 = ½mv2 kx2 = mv2 (5,000 N/m)(0.75 m)2 = (100 kg)v2 v = 5.3 m/s