Transcript Document
1 The Effects of Greenhouse Gas Limits on Electric Power System Dispatch and Operations Miaolei Shao ([email protected]) Ward Jewell ([email protected]) Department of Electrical and Computer Engineering Wichita State University PSERC Tele-Seminar September 2nd, 2008 2 Greenhouse Gas (GHG) Emissions & Electric Power Industry • United States is the source of 1/4 of the world’s GHG emissions. • Electric power industry accounts for 38 percent of the nation’s overall carbon dioxide (CO2) emissions and one-third of the overall U.S. GHG emissions. • 39 states have or are developing State Action Plans specially targeting GHG emission reductions. -- Regional Greenhouse Gas Initiative (RGGI) -- California Assembly Bill 32 (AB 32) 3 Electric Power System Features That Impact CO2 Emissions • CO2 emission factors by type of fuel • Unit thermal efficiency • Regional generation mix • Electricity demand • Transmission constraints 4 CO2 Emission Factors (EF) by Type of Fuel (lb CO2/MBtu) Coal EF Oil EF Gas EF Bituminous 205 Distillate oil 161 Natural gas 117 Subbituminous 213 Jet fuel 156 Propane 139 Lignite 215 Kerosene 159 Anthracite 227 Petroleum coke 225 Residual 174 Source: S. Goodman, M. Walker, “Benchmarking air emissions of the 100 largest electric power producers in the united states – 2004”, Apr. 2006 5 CO2 Emission Factors (EF) by Type of Fuel (Cont.) P1 = 400 MW G1 (400 MW coalfired generation unit) Bus 1 Bus 2 800 MW Load 400 MW Two-bus, two-generator power system P2 = 400 MW G2 (400 MW gasfired generation unit) CO2 emission factor is 215 lbs/Mbtu for coal and 117 lbs/Mbtu for gas. (346 198) tons / h 0.68 tons / MWh 800 MW Heat rate data of 400 MW fossil fired generation units came from “A. J. Wood, B. F. Wollenberg, Power Generation, Operation, and Control, John Wiley & Sons, 1996.” 6 Unit thermal Efficiency and CO2 Emissions G1 (400 MW coal-fired generation unit) Efficiency (400 MW) Efficiency + 1% Efficiency + 3% Efficiency (%) 37.9% 38.9% 40.9% CO2 emissions (tons/h) 345.5 336.7 320.2 CO2 emission reduction (%) N/A -2.5% -7.3% Efficiency + 1% Efficiency + 3% G2 (400 MW gas-fired generation unit) Efficiency (400 M) Efficiency (%) 35.9% 36.9% 38.9% CO2 emissions (tons/h) 198.5 193.1 183.2 CO2 emission reduction (%) N/A -2.7% -7.7% One kilowatt hour (kWh) has a thermal equivalent of approximately 3412 Btu. 7 Regional Generation Mix & CO2 Emissions P1 = 400 MW Bus 1 G1 (400 MW coalfired generation unit) Bus 2 600 MW Load 400 MW P2 = 200 MW Two-bus, two-generator power system P1 = 400 MW G1 (400 MW coalfired generation unit) Bus 1 G2 (400 MW gasfired generation unit) Bus 2 600 MW 600 MW Load P2 = 0 MW P3 = 200 MW G3 (400 MW coalfired generation unit) Two-bus, three-generator power system G2 (400 MW gasfired generation unit) Regional Generation Mix & CO2 Emissions (Cont.) 527 450 (G2) (G1) 450 tons / h 0.75 tons / MWh 600 MW (G3) (G1) 527 tons / h 0.88 tons / MWh 600 MW 8 9 Electricity Demand & CO2 Emissions Load L (MW) 800 Load-duration curve 600 400 Hours load equals or exceeds L MW Bus 2 P1 = 400 MW G1 (400 MW coalfired generation unit) Bus 1 400 MW Load 600 MW Load 800 MW Load 400 MW P2 = 0 MW P2 = 200 MW Two-bus, two-generator power system P2 = 400 MW G2 (400 MW gasfired generation unit) 10 Electricity Demand & CO2 Emissions (Cont.) CO2 emission amounts (tons/h) 346 tons / h 0.87 tons / MWh 400 MW 450 tons / h 0.75 tons / MWh 600 MW 544 tons / h 0.68 tons / MWh 800 MW CO2 emission rates (tons/MWh) 11 Transmission Constraints & CO2 Emissions P1 = 400 MW Bus 1 G1 (400 MW coalfired generation unit) Bus 2 600 MW Load 400 MW P2 = 200 MW 400 MW maximum transmission capability between bus 1 and bus 2 P1 = 300 MW G1 (400 MW coalfired generation unit) Bus 1 G2 (400 MW gasfired generation unit) Bus 2 300 MW 300 MW maximum transmission capability between bus 1 and bus 2 600 MW Load P2 = 300 MW G2 (400 MW gasfired generation unit) 12 Transmission Constraints & CO2 Emissions (Cont.) 450 412 Transmission congestion help reduce system CO2 emissions? (G2) (G2) (G1) (G1) 450 tons / h 0.75 tons / MWh 600 MW 412 tons / h 0.69 tons / MWh 600 MW 13 CO2 Emission-incorporated Cost Model Input-output function H fuel _ ij (Pi ) ki 0 ki1Pi ki 2 Pi 2 Fuel cost function Ffuel _ ij (Pi ) C j (ki 0 ki1Pi ki 2 Pi 2 ) CO2 emission cost function FCO2 _ ij (Pi ) CCO2 ef j (ki 0 ki1Pi Ki 2 Pi 2 ) Fuel-emission cost function Ffe _ ij ( Pi ) Ffuel _ ij (Pi ) FCO2 _ ij (Pi ) (C j CCO2 ef j )(ki 0 ki1Pi ki 2 Pi 2 ) Fossil-fired Generation Units’ Cost Variation Due to CO2 Emissions 4 4 x 10 2.2 2 2 1.8 1.8 1.6 1.6 1.4 1.4 Costs ($/h) Costs ($/h) 2.2 1.2 1 0.6 0.6 0.4 0.4 0.2 0.2 0 0 300 400 Output, P (MW) G1 (400 MW coalfired generation unit) • Coal price is 1.90 $/MBtu • CO2 emission factor of coal is 215 lb/MBtu • Gas price is 3.80 $/MBtu • CO2 emission factor of gas is 117 lb/MBtu • CO2 price is 30 $/ton 1 0.8 200 x 10 1.2 0.8 100 14 Fuel costs 100 200 300 400 Output, P (MW) G2 (400 MW gasfired generation unit) CO2 emission costs Fuel-emission costs 15 Breakeven Price of CO2 Coal price is 1.90 $/MBtu Coal CO2 emission factor is 215 lb/MBtu Gas CO2 emission factor is 117 lb/MBtu • Gas price is 3.8 $/MBtu • Gas price is 5.7 $/MBtu • Breakeven price of CO2 is around 50 $/ton • Breakeven price of CO2 is around 100 $/ton CO2 Emission-constrained ac Optimal Power Flow (OPF) Objective function Ng F Equality constraints Inequality constraints i 1 Ng fe _ ij i 1 P P i 1 ( Pi ) Ffuel _ ij ( Pi ) FCO2 _ ij ( Pi ) Ng i 16 Load PLoss Pi Pi Pi Ng Q Q i 1 Ek Ek Ek i Load QLoss Qi Qi Qi k k k MVAmn MVAmn MVAmn Linear Programming Software used in this research: PowerWorld Simulator 17 IEEE Reliability Test System (RTS) • 24 buses • 38 transmission lines and transformers. • a total load of 2850 MW • a total generation capacity of 3405 MW 18 Simulation Cases and Description Case # Description Fuel Prices ($/MBtu) Coal Gas Oil System Load (MW) 1 Medium fuel price and normal system load 1.88 9.09 12.00 1995 2 High fuel price and normal system load 1.95 12.74 16.37 1995 3 Medium fuel price and peak system load 1.88 9.09 12.00 2850 4 High fuel price and peak system load 1.95 12.74 16.37 2850 Simulation Results of Case 1 Power Output (MW) 1200 70 $/ton 180 $/ton 19 280 $/ton 1000 800 Coal 600 Gas 400 Oil 200 Nuclear • At CO2 price of 70 $/ton, coal and gas power generation start to shift. • At CO2 price of 180 $/ton, gas power generation almost equals coal power generation. Hydro 0 0 50 • At CO2 price of 280 $/ton, major shifting process is finished. 100 150 200 250 300 350 400 450 1000 800 600 400 200 0 400000 320000 240000 160000 80000 0 0 50 100 150 200 250 300 350 400 450 CO2 Price ($/ton) Total CO2 Emissions (tons/hr) CO2 Emission Costs ($/hr) Fuel Costs ($/hr) Fuel-Emission Costs ($/hr) Costs ($/h) Total CO2 Emissions (tons/h) CO2 Price ($/ton) • CO2 emissions decrease from 928 tons/h at CO2 price of 0 $/ton to 514 tons/h at CO2 price of 280 $/ton, a 44.6% reduction. • The system fuel costs increase from 18595 $/h at CO2 price of 0 $/ton to 79255 $/h at CO2 price of 280 $/ton, a 326% increase. Simulation Results of Case # 1 (Cont.) Power Output (MW) 1200 70 $/ton 180 $/ton 280 $/ton 1000 800 Coal 600 Gas 400 Oil 200 Nuclear Hydro 0 0 50 100 150 200 250 300 350 400 450 CO2 Price ($/ton) 20 21 Simulation Results 130 $/ton 1200 1200 1000 1000 800 Coal 600 Gas 400 Oil 200 Nuclear Power Output (MW) Hydro 0 0 50 Coal 600 Gas 400 Oil 200 Nuclear Hydro 0 0 50 100 150 200 250 300 350 400 450 CO2 Price ($/CO2) 400000 800 320000 600 240000 400 160000 200 80000 0 50 100 150 200 250 300 350 400 450 CO2 Price ($/ton) Total CO2 Emissions (tons/h) CO2 Emission Costs ($/h) Fuel Costs ($/h) Fuel-Emission Costs ($/h) Case # 1 Totoal CO2 Emissions (tons/h) 1000 Costs ($/h) Total CO2 Emissions (tons/h) CO2 Price ($/ton) 0 410 $/ton 800 100 150 200 250 300 350 400 450 0 270 $/ton 1000 400000 800 320000 600 240000 400 160000 200 80000 0 0 0 50 100 150 200 250 300 350 400 450 CO2 Price ($/CO2) Total CO2 Emissions (tons/h) CO2 Emission Costs ($/h) Fuel Costs ($/h) Fuel-Emission Costs ($/h) Case # 2 Costs ($/h) Power Output (MW) 70 $/ton 180 $/ton 280 $/ton 22 Simulation Results (Cont.) 130 $/ton 260 $/ton 1400 1400 1200 1200 1000 Coal 800 Gas 600 Oil 400 Nuclear 200 Power Output (MW) 0 Coal 800 Gas 600 Oil 400 Nuclear 200 Hydro 0 1000 Hydro 0 0 50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450 CO2 Price ($/ton) 800000 1450 600000 1400 400000 1350 1300 200000 1250 0 0 50 100 150 200 250 300 350 400 450 Total CO2 Emission (tons/h) 1500 Costs ($/h) Total CO2 Emission (tons/h) CO2 Price ($/ton) 1500 800000 1450 600000 1400 400000 1350 1300 200000 1250 0 0 50 100 150 200 250 300 350 400 450 CO2 Price ($/ton) CO2 Price ($/ton) Total CO2 Emissions (tons/h) CO2 Emission Costs ($/h) Total CO2 Emissions (tons/h) CO2 Emission Costs ($/h) Fuel Costs ($/h) Fuel-Emission Costs ($/h) Fuel Costs ($/h) Fuel-Emission Costs ($/h) Case # 3 Case # 4 Costs ($/h) Power Output (MW) 80 $/ton 180 $/ton Conclusions • CO2 emissions from electric power industry are impacted by several power system features; ignoring any of them will incur errors in analysis. • CO2 emission-constrained ac OPF is a powerful tool that considers all the features that impact CO2 emissions from electric power generation. • CO2 emission-constrained ac OPF, which can be realized in commercial and educational power system software or developed as stand-alone software, has potential to be utilized for investigating and assessing the effects, including costs and reliability, of GHG limits on electric power industry. • Simulation results indicate that the effects of GHG limits on electric power system dispatch and operations are sensitive to several factors such as system load levels, fuel prices etc. • In current high gas price situation, it is quite expensive to reduce CO2 emissions by switching from coal power generation to gas power generation. 23 Future Research 24 PSERC Project M21: “Technical and Economic Implications of Greenhouse Gas Regulation in a Transmission Constrained Restructured Electricity Market” Academic Team Members: Industry Team Members: Ward Jewell (lead), Wichita Shmuel Oren, UC Berkeley Chen-Ching Liu, University College Dublin Yishu Chen, UC Merced Jim Price, CAISO Mariann Quinn, Duke Energy Floyd Galvan, Entergy Mark Sanford, GE Jay Giri, AREVA Tongxin Zheng, ISO-NE Ralph Boroughs, TVA Robert Wilson, WAPA Avnaesh Jayantilal, AREVA Jerry Pell, DOE Sundar Venkataraman, GE Energy 25 Thank You