Transcript Chapter2
2 Neuron Model and Network Architectures 1 2 Biological Inspiration 2 2 Neuron Model a1~an為輸入向量的各個分量 w1~wn為神經元各個突觸的權值 b為偏差 f為傳遞函數,通常為非線性函數。 例如:hardlim(n) ,n正為1,其餘0 t為神經元輸出 3 2 • • • • • • • Notation Scalars-small italic letters:a,b,c Vectors-small bold nonitalic letters:a,b,c Matrices-capital BOLD nonitalic letters:A,B,C Input-p,p,P Weight-w,w,W Bias-b,b Output-a,a,a(t) 4 2 Single-Input Neuron 例1:w=3,p=2 and b=-1.5 then a=f(3(2)-1.5)=f(4.5) 5 2 Transfer Functions a=0 n<0 a=1 n>=0 例2:w=3, p=2 and b=-1.5 then a=hardlim(3(2)-1.5)=hardlim(4.5)=1 6 2 Transfer Functions 例3:w=3, p=2 and b=-1.5 then a=purelin(3(2)-1.5)=purelin(4.5)=4.5 7 2 Transfer Functions 例4:w=3, p=2 and b=-1.5 then a=logsig(3(2)-1.5)=logsig(4.5)= 8 2 Transfer Functions 9 2 0<=a<=1 -1<=a<=1 10 2 Multiple-Input Neuron Neuron With R Inputs Abbreviated Notation 11 2 Example P2.3 Given a two-input neuron with the following parameters: b=1.2, W= [ 3 2 ] and p= [ -5 6 ]T , calculate the neuron output for the following transfer functions: i. A symmetrical hard limit transfer function ii. A saturating linear transfer function iii. A hyperbolic tangent sigmoid(tansig) transfer function i. a=hardlims(-1.8)= -1 ii. a=satlin(-1.8)= 0 iii. a=tansig(-1.8)= 12 2 Layer of S Neurons Layer of S Neurons R Input S Output i.e.,R≠S 13 2 Abbreviated Notation w 1, 1 w 1, 2 w 1, R W= w 2, 1 w 2, 2 w 2, R w S, 1 w S, 2 w S, R p1 p= p2 pR b1 b= b2 bS a1 a= a2 aS 14 2 Multiple Layers of Neurons Three-Layer Network 15 2 Abbreviated Notation Hidden Layers Output Layer 16 2 Delays and Integrators a(0)=a(0) a(1)=u(0) 17 2 Recurrent Network a 1 = satlins Wa 0 + b = satlins Wp + b a2 = satlins Wa 1 + b 18