C5: Neutrinos, Nuclear structure and Physics beyond the

Download Report

Transcript C5: Neutrinos, Nuclear structure and Physics beyond the

Neutrino Masses, Double Beta Decay and Nuclear Structure

ECT*(Trento), Doctoral Training Program on “Neutrinos in Nuclear, Particle and Astrophysics”.

Amand Faessler, University of Tuebingen, www.uni-tuebingen.de/faessler/

CONTENTS: 0. History of the Neutrinos (Introduction) 1. Neutrino Properties 2. The See-Saw Model 3. The Single Beta Decay 4. The Neutrinoless Double Beta Decay 5. The Quasi-Particle Random Phase Approximation (QRPA) 6. Comparison of QRPA, Shell Model, Projected Hartree Fock Bogoliubov (PHBF), Interacting Boson Model 2 7. Can one measure with Charge Transfer Reactions the 0 nbb -Matrix element?

8. Competing Mechanisms for the 0 nbb 9. The Heidelberg-Moscow data and the Neutrino Mass FAESSLE

R;

Trento 2011

0

.

History of the Neutrinos

• 1930 Pauli‘s invention of the neutrino • 1955 Reines and Cowen detection of the electron neutrino n e • 1962 Brookhaven; detection of muon neutrino n m • 2000 Fermi Lab; detection of tau neutrino n t • 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2 nbb decay • 1986 Santa Barbara (Caldwell) detection of 2 nbb .

• 20xx Detection of 0 nbb decay ?

FAESSLER; Trento 2011

Sehr geehrte radioaktiven Damen und Herren: Invention of the Neutrino in a letter from Zuerich to Tuebingen on December 4th, 1930: Conservation of Energy and Angular momentum.

FAESSLER; Trento 2011

History of the Neutrinos

• 1930 Pauli‘s invention of the neutrino • 1955 Reines and Cowen detection of the electron neutrino n e • 1962 Brookhaven; detection of muon neutrino n m • 2000 Fermi Lab; detection of tau neutrino n t • 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2 nbb decay • 1986 Santa Barbara detection of 2 nbb • 20xx Detection of 0 nbb decay ?

decay FAESSLER; Trento 2011

Reines and Cowen at the Neutrino Experiment (at Savannah River Reactor) Fissions of 235 92 Uranium 143 rich fragments produces neutron . Beta decay: n  p + e + n e c

History of the Neutrinos

• 1930 Pauli‘s invention of the neutrino • 1955 Reines and Cowen detection of the electron neutrino n e • 1962 Brookhaven; detection of muon neutrino n m p  m + n c m ; n c m + p  n + m + (no: e + ) • 2000 Fermi Lab; detection of tau neutrino n t • 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2 nbb decay • 1986 Santa Barbara: 2 nbb decay by Caldwell • 20xx Detection of 0 nbb decay ?

FAESSLER; Trento 2011

1. Neutrino properties: What is the Mass of the Neutrino ?

 m n e Mass measurement in the single beta decay  n m and n t ?

 S i m n i from cosmology  m n e from the neutrinoless double beta decay FAESSLER; Trento 2011

T e [keV] (T e - Q) [eV] antineutrino For the Triton

Mass of the Electron Neutrino?

Tritium decay (Mainz + Troitsk)

With: FAESSLER; Trento 2011

Upper Limit of the Neutrino Mass:

< (2.2 eV)

2

; 95% conf. limit

5 % 95 % 0 (2.2 eV) 2 m nb 2 FAESSLER; Trento 2011

KATRIN Spectrometer tank on the way from the Rhine to the FZ Karslsruhe FAESSLER; Trento 2011 A dinosaur on trip

Mass of

n m

(Paul Scherrer Institut 1996):

FAESSLER; Trento 2011

Mass of tau Neutrino ARGUS

(DESY Hamburg) e + + e  t + + t ; m nt

Neutrino Mass from Astrophysics: Hubble law: v = H 0 *Distance = h *100 [km/(sec*Mpc)] *Distance [Mpc] = 71[km/(sec*Mpc)]*Distance [Mpc]; h=0.71

; Hubble Constant: H 0 = 71 [km/sec*Mpc] FAESSLER; Trento 2011

k = 2 p / l [(h=0.71)/ Mpc]

W 0 = 1.0 W L = 0.66 W b = 0.04

H 0 = 72 n s W n = 0.94 = 0 0.01

FAESSLER; Trento 2011

W 0 = 1.0 W L = 0.66 W b = 0.04

H 0 = 72 n s W n = 0.94 = 0.05

0.01

FAESSLER; Trento 2011

W 0 = 1.0 W L = 0.66 W b = 0.04

H 0 = 72 n s W n = 0.94 = 0.25

0.01

FAESSLER; Trento 2011

FAESSLER; Trento 2011

• WMAP = Wilkinson Microwave Anisotropy Probe.

• ACBAR = Arcminute Cosmology Bolometer Array Receiver (Berkeley) • CBI = Cosmic Background Imager (CALTEC) • 2dFGRS = 2 degree Field Galaxy Redshift Survey FAESSLER; Trento 2011

FAESSLER; Trento 2011

Page 1

2. The See-Saw Model

Diagonalise the matrix: FAESSLER; Trento 2011

p

3. The Single Beta Decay

e n c p e n W 1/(q 2 – M W 2 ) n FAESSLER; Trento 2011 -1/( M W 2 ) d (r 12 ) n

FAESSLER; Trento 2011 Page 17

4. Neutrino Mass from Neutrinoless Double Beta Decay • The neutrinoless Double Beta Decay is forbidden in the Standard Model. Allowed in GUT‘s and SUSY. It determines the absolute mass of Majorana Neutrinos. • Matrix elements as important as the data.

• Practically all Grand Unified Theories and Supersymmetry request massive Majorana Neutrinos FAESSLER; Trento 2011

O νββ -Decay (forbidden in Standard Model)

P Left n P ν Left n Phase Space 10 6 x 2 νββ

only for massive Majorana ν = ν c Neutrinos FAESSLER; Trento 2011

GRAND UNIFICATION

Left-right Symmetric Models SO(10) Majorana Mass: FAESSLER; Trento 2011

e P ν n P e ν L/R l/r n

2*2*2 = 8 posibilities FAESSLER; Trento 2011

e p n n p e L/R n

W

l/r n

l/r n P ν

FAESSLER; Trento 2011

P n l/r light ν heavy N Neutrinos

8x8x2 = 128 contributions

Theoretical Description of Nuclei: Vadim Rodin, Fedor Simkovic, Amand Faessler, Saleh Yousef, D.-L. Fang

0 + 0 k k k 0 + 1 + 2 νββ e 1 P ν n P n e 2 E k E i 0 +

FAESSLER; Trento 2011

Neutrinoless Double Beta Decay Probability FAESSLER; Trento 2011

5. The best choice: Quasi-Particle Random Phase Approximation (QRPA) and Shell Model

QRPA starts with Pairing:

FAESSLER; Trento 2011

Effective Majorana Neutrino-Mass for the 0 nbb Decay Tranformation from Mass to Flavor Eigenstates

CP

Time reversal

CPT = I

FAESSLER; Trento 2011

FAESSLER; Trento 2011

FAESSLER; Trento 2011 Page 25b

2011 FAESSLER; Trento 2011

From Dirac to Majorana Neutrinos DIRAC NEUTRINOS: Majorana Neutrinos : FAESSLER; Trento 2011

Neutrino Masses

• Single Beta Decay (Mainz, Troisk) < 2.2 [eV] • Double Beta Decay Majorana Mass (Tübingen): < 0.27 [eV] • Astophysics: S = m 1 + m 2 + m 3 < 0.17 to 2.0 [eV] Depends on Cosmological models (Hannestad) FAESSLER; Trento 2011

FAESSLER; Trento 2011 Page 26

FAESSLER; Trento 2011

• Solar: • Atmospheric: • Reactor FAESSLER; Trento 2011

Results from Oscillations:

No Hierarchy, no absolute Mass Scale

Fogli, Lisi, Marrone, Palazzo: Prog. Part. Nucl. Phys. 57(2006)742; Data 2011

(Bild) Sequence 1-2 fixed by oscillations in the sun and in vacuum. No oscillations 13 for solar neutrinos observed,

Effective Majorana Neutrino-Mass for the 0 nbb Decay Tranformation from Mass to Flavor Eigenstates

CP

Time reversal

CPT = I

CP = T= K FAESSLER; Trento 2011

Normal Hierarchy: Double Beta Decay Majorana Mass m bb versus lowest mass m 1

Inverted Hierarchy: Double Beta Decay Majorana Mass m bb versus lowest mass m 3 FAESSLER; Trento 2011

6. Different Methods for the 0 nbb -Matrix Elements for the Light Majorana Neutrino Exchange .

A. Escuderos, A. Faessler, V. Rodin, F. Simkovic, J. Phys. G37 (2010) 125108; arXiv: 1001.3519 [nucl-th] • Quasi-Particle Random Phase Approximation (QRPA; Tübingen).

• Shell Model (Strasbourg-Madrid).

• Angular Momentum Projected Hartee-Fock Bogoliubov (Tuebingen; P. K. Rath et al.).

• Interacting Boson Model (Barea and Iachello).

Amand Faessler, Tuebingen

Neutrinoless Double Beta Decay Probability FAESSLER; Trento 2011

a) QRPA all the Ring diagrams: Ground State (Exercise IV.5): 0, 4, 8, 12 , … quasi particles (seniority) b) The Shell Model Ground state: 0, 4, 6, 8, ….

Problem for SM: Size of the Single Particle Basis .

Amand Faessler, Tuebingen

Additive Contributions of 0, 4, 6, … Quasi-Particle States in the SM (Poves et al.).

128 Te Not in QRPA 82 Se Increasing Admixtures in the Ground State Amand Faessler, Tuebingen

Basis Size Effect for 82 Se  82 Kr on the Neutrinoless Double Beta Decay

.

4levels (Shell Model): 1p3/2, 0f5/2, 1p3/2, 0g9/2 4levels: Ikeda Sum rule 50 %; 5 levels: 60 % 6levels: 0f7/2, 1p3/2, 0f5/2, 1p3/2, 0g9/2, 0g7/2 9levels:0f7/2, 1p3/2, 0f5/2, 1p3/2, 0g9/2, 0g7/2, 1d5/2, 2s1/2, 1d3/2 Amand Faessler, Tuebingen

GT Contrib. of different Angular Momenta Neutron Pairs to the 0 nbb Decay.

A Comparison QRPA (TUE) and Shell Model (Madrid) with the same Basis. Amand Faessler, Tuebingen 82 Se ; 2p 3/2 , 1f 5/2 , 2p 1/2 , 1g 9/2 130 Te; 1g 7/2 , 2d 5/2 , 2d 3/2 , 3s 1/2 ,1h 11/2

Contributions of different Angular Momentum and Parity Neutron Pairs to the Matrix Elements of 0 nbb Decay in QRPA for 76 Ge , 100 Mo and 130 Te. Amand Faessler, Tuebingen QRPA QRPA

Contribution of Higher Angular Momentum Pairs in Projected HFB.

HFB 0 bbn Only even Angular Momentum Pairs with Positive Parity can contribute. IBM: = 0 + and 2 + Pairs Amand Faessler, Tuebingen

IBM: Lowest Order Mapping (LO) . A p (j) and B p (j, j‘) by equating matrix elements in Fermion and Boson representation.(Tabulated by Barea and Iachello table XVII Phys. Rev. C79 (2009) 044301

Next to Lowest Order Mapping (NLO) Fermions  Bosons 76 Ge  76 Se Lowest Order is enough

Neutrinoless Double Beta Decay Probability FAESSLER; Trento 2011

QRPA (TUE), Shell Model

IBM2

, PHFB, PHFB+GCM(

b

)

QRPA; RQRPA; 3 Basis Sets; g A =1.00  1.25; Bonn+Argonne; 2 Short Range Correlations Amand Faessler, Tuebingen

7. Can one measure with Charge Transfer Reactions the 0 nbb Fermi Matrix Element? (V. Rodin and A. Faessler, Phys.Rev. C80(2009)041302; Prog. Part. Nucl. Phys. 66 (2011) 441) Fermi and Gamow-Teller 0 nbb Transition Operator with Closure FAESSLER; Trento 2011

Fermi and Gamow-Teller 0 nbb Transition Operator with Closure 0 nbb Transition Matrix Element with Closure Relation: Amand Faessler, Tuebingen

Fermi Strength concentrated in the Isobaric Analogue State |IAS> and Double Isobaric Analogue State |DIAS> Isotensor force needed: T  T-2; Coulomb Interaction 0 + |DIAS> = |T, T-2> T 0 + |IAS> = |T, T-1 > T T |g.s.

i >=|0 i + > |g.s.

f >=|T-2,T-2> + e |DIAS>

Gamow Teller Strength not concentrated in one State broad Resonance.

Fermi Transition: narrow Gamow-Teller: Main Contrib. Neutron Pairs: T =1, L=0   Gamow-Teller: g A ( s*s ) |S=0> = - g A S=0 3 |S=0> Fermi (no spin dep.): g V |S=0> = 1 |S=0> Shell Model for Fermi ~ (1/5) of QRPA Amand Faessler, Tuebingen

Fermi 0

nbb

Transition Operator (Vadim Rodin)

Amand Faessler, Tuebingen

FAESSLER; Trento 2011 Page 38

Transition Matrix Elements for Fermi Transitions:

First Leg Second Leg 0 + T 0 + T |IAS> = |T, T-1> Exp. (d, 2 He): Frekers; Sakai; Zegers |g.s.

i > =|T, T> |g.s.

f > = |T-2,T-2> + e |DIAS>

8. How to find the Leading Mechanism for the o

nbb

?

• Light left handed Majorana n Exchange • Heavy left handed Majorana n Exchange • Heavy right handed Majorana n • SUSY Lepton Number Violating Mechanism.

Amand Faessler, Tuebingen

d

GUT: Light and Heavy left handed Majorana Neutrino

u

Exchange

W L n kM mass e U n ek=1,2,3 Page 41 e W L d u Amand Faessler, Tuebingen

Different Mechanisms for the 0 nbb FAESSLER; Trento 2011

Coefficients for the different Mechanisms FAESSLER; Trento 2011

SUSY: R-Parity Breaking Lepton Number-Violating Minimal Supersymmetric Model Super-fields: Amand Faessler, Tuebingen

Gluino Exchange; Strong Interaction; Gluinos couple to Quarks and SUSY-Quarks.

l ‘ ijk L L i Q L j D R k FAESSLER; Trento 2011

Transition Probability prop to Inverse Half Life; SUSY Contribution

l

111

.

Dominance of Gluino echange in short range part assumed.

Similar expression for Dominance of Neutralino exchange. Amand Faessler, Tuebingen

Two leading non-interfering Mechanisms: Light Majorana and Heavy R Neutrino i = different nuclei, e.g. 76 Ge, 100 Mo, 130 Te; | h| 2 > 0 and our matrix element for g A = 1.25 Due to ratios only minimal changes for g Amand Faessler, Tuebingen A =1.00

Two interfering Mechanisms: Light Majorana and Heavy Left Neutrino Light Majorana-Neutrino and Gluino or Neutralino exchange .

Three different transitions needed, e.g. 76 Ge, 100 Mo, 130 Te, to determine the three parameters .

Amand Faessler, Tuebingen

9. HD claim for Detection of 0 n DBD

hep-ph/0512263

Klapdor and coworkers in Heidelberg claim, they have detected 0

nbb

of 76 Ge

Source = Detector

  10.9 kg - ( 86% from 8% nat.) 76 Ge Gran Sasso Laboratory (Italy) Spectrum with 71.7 kg •y FAESSLER; Trento 2011

Neutrino Mass from

0nbb

Experiment Klapdor et al. 76 Ge Mod. Phys. Lett. A21,1547(2006) ; T(1/2; 0

nbb

) = (2.23 +0.44 -0.31) x 10 25 years; 6

s

Matrix Elements: QRPA Tuebingen

n

)> = 0.24 [eV] (exp+-0.02; theor+-0.01) [eV]

Amand Faessler, Tuebingen

1) Summary

Comparing four different approaches for the 0nbb matrix elements: a. Shell model only small basis; violates the Ikeda sum rule by 50 to 60%. b. Interacting boson Model: only s (0 + ) and d (2 + ) pairs.

c. Projected Hartee Fock Bogoliubov: Only 0 + pairs . d. QRPA large basis; fulfills Ikeda sum rule; realistic forces. Amand Faessler, Tuebingen

2) Summary

Search for the Leading Mechanism  One Leading Mechanism: Determine the h 1 ( m n ?) in two systems. Is it the same?  Two leading non-interfering mechanisms: Determine h 1 and h 2 in three systems  Two interfering mechanisms: Determine h 1 , h 2 and the relative phase theta in three nuclei and

THE END

Amand Faessler, Tuebingen

7. Can one measure with Charge Transfer Reactions the 0 nbb Fermi Matrix Element? (V. Rodin and A. Faessler, Phys.Rev. C80(2009)041302; Prog. Part. Nucl. Phys. 66 (2011) 441) Fermi and Gamow-Teller 0 nbb Transition Operator with Closure FAESSLER; Trento 2011

Fermi and Gamow-Teller 0 nbb Transition Operator with Closure 0 nbb Transition Matrix Element with Closure Relation: Amand Faessler, Tuebingen

Fermi Strength concentrated in the Isobaric Analogue State |IAS> and Double Isobaric Analogue State |DIAS> Isotensor force needed: T  T-2; Coulomb Interaction 0 + |DIAS> = |T, T-2> T 0 + |IAS> = |T, T-1 > T T |g.s.

i >=|0 i + > |g.s.

f >=|T-2,T-2> + e |DIAS>

Gamow Teller Strength not concentrated in one State broad Resonance.

Fermi Transition: narrow Gamow-Teller: Main Contrib. Neutron Pairs: T =1, L=0   Gamow-Teller: g A ( s*s ) |S=0> = - g A S=0 3 |S=0> Fermi (no spin dep.): g V |S=0> = 1 |S=0> Shell Model for Fermi ~ (1/5) of QRPA Amand Faessler, Tuebingen

Fermi 0

nbb

Transition Operator (Vadim Rodin)

Amand Faessler, Tuebingen

Transition Matrix Elements for Fermi Transitions:

First Leg Second Leg 0 + T 0 + T |IAS> = |T, T-1> Exp. (d, 2 He): Frekers; Sakai; Zegers |g.s.

i > =|T, T> |g.s.

f > = |T-2,T-2> + e |DIAS>