Transcript Folie 1
Double Beta Decay
and
Neutrino Masses
Amand Faessler
Tuebingen
Neutrino Masses and the
Neutrinoless Double
Beta Decay: Dirac versus
Majorana Neutrinos
Accuracy of the Nuclear Matrix Elements
Amand Faessler,
Tuebingen
1
Neutrinoless Double
Beta Decay
The Double Beta Decay:
0+
1+
β0+
2e-
eE>2me
β-
0+
Amand Faessler,
Tuebingen
2
2νββ-Decay (in SM allowed)
P
n
P
n
Thesis Maria Goeppert-Mayer
1935 Goettingen
Amand Faessler,
Tuebingen
3
Oνββ-Decay (forbidden)
P
P
Left
ν
Phase Space
Left
106 x 2νββ
n
n
only for Majorana Neutrinos
ν = νc
Amand Faessler,
Tuebingen
4
GRAND UNIFICATION
Left-right Symmetric Models SO(10)
Majorana Mass:
Amand Faessler,
Tuebingen
5
P
P
ν
e-
L/R
n
e-
ν
l/r
n
Amand Faessler,
Tuebingen
6
P
P
l/r
ν
light ν
heavy N
l/r
Neutrinos
n
n
Amand Faessler,
Tuebingen
7
Supersymmetry
Bosons ↔ Fermions
----------------------------------------------------------------------P
P
e-
e-
Proton
u
u
u
d
d
Proton
u
Neutron
Neutron
n
n
Neutralinos
Amand Faessler,
Tuebingen
8
Theoretical Description:
Simkovic, Rodin, Haug, Kovalenko, Vergados,
Kosmas, Schwieger, Raduta, Kaminski,
Gutsche, Bilenky, Vogel et al.
0+
k
k
1+
P
P
e1
ν
k
e2
Ek
2n
n
Ei
0+
0+
0νββ
Amand Faessler,
Tuebingen
9
Amand Faessler,
Tuebingen
10
The best choice:
Quasi-Particle-
Pairing
(a)
Quasi-Boson-Approx.:
(b)
Particle Number non-conserv.
(important near closed shells)
Unharmonicities
Proton-Neutron Pairing
(c)
(d)
Amand Faessler,
Tuebingen
11
Amand Faessler,
Tuebingen
12
Nucleus
48Ca
76Ge
82Se
96Zr
100Mo
116Cd
128Te
130Te
134Xe
136Xe
150Nd
T1/2 (exp)
[years]
>9.5
1021
>1.9
1025
>1.4
1022
>1.0
1021
>5.5
1022
>7.0
1022
>8.6
1022
>1.4
1022
>5.8
1022
>7.0
1023
>1.7
1021
Ref.:
You
Klapdor
Elliott
Arn.
Ejiri
Danevich
Ales.
Ales.
Ber.
Stau
dt
Klime
nk.
<m>[eV]
<22.
<0.47
<8.7
<40.
<2.8
<3.8
<17.
<3.2
<27.
<3.8
<7.2
η~m(p)/M(n)
<200.
<0.79
<15.
<79.
<6.0
<7.0
<27.
<4.9
<38.
<3.5
<13.
λ‘(111)[10-4]
<8.9
<1.1
<5.0
<9.4
<2.8
<3.4
<5.8
<2.4
<6.8
<2.1
<3.8
Only for Majorana ν possible.
Amand Faessler,
Tuebingen
13
gPP fixed to 2νββ; M(0nbb) [MeV**(-1)]
Each point: (3 basis sets) x (3 forces) = 9 values
Amand Faessler,
Tuebingen
14
Amand Faessler,
Tuebingen
15
Neutrinoless Double Beta Decay and the
Sensitivity to the Neutrino Mass
of planed Experiments
Amand Faessler,
Tuebingen
16
Neutrino-Masses from the 0νbb
and Neutrino Oscillations
Solar Neutrinos (CL, Ga, Kamiokande, SNO)
Atmospheric ν (Super-Kamiokande)
Reactor ν (Chooz; KamLand)
with CP-Invariance:
Amand Faessler,
Tuebingen
17
Solar Neutrinos (+KamLand):
(KamLand)
Atmospheric Neutrinos:
(Super-Kamiok.)
Amand Faessler,
Tuebingen
18
Reactor Neutrinos (Chooz):
CP
Amand Faessler,
Tuebingen
19
ν1, ν2, ν3
νe, νμ, ντ
Mass States
Flavor States
Theta(1,2) = 32.6 degrees Solar + KamLand
Theta(1,3) < 13 degrees
Chooz
Theta(2,3) = 45 degrees
S-Kamiokande
Amand Faessler,
Tuebingen
20
OSCILLATIONS AND
DOUBLE BETA DECAY
Bilenky, Faessler, Simkovic P. R. D 70(2004)33003
Hierarchies: mν
Normal
Inverted
m2
m1
m3
m2
m1
m1<<m2<<m3
m3
m3<<m1<<m2
Amand Faessler,
Tuebingen
21
(Bild)
Amand Faessler,
Tuebingen
22
Summary:
Accuracy of Neutrino Masses
from 0nbb
Fit the g(pp) by 2nbb in front of the protonneutron Gamow-Teller NN matrixelement
include exp. Error of 2nbb.
Calculate with these g(pp) for three different
forces (Bonn, Nijmegen, Argonne) and three
different basis sets the 0nbb.
Use QRPA and R-QRPA (Pauli principle)
Use: g(A) = 1.25 and 1.00
Error of matrixelement 20 to 50 % (large
errors from experim value of T(1/2, 2nbb)).
Amand Faessler,
Tuebingen
23
Summary:
Results from 0nbb
<m(n)>(0nbb Ge76, Exp. Klapdor) < 0.47 [eV]
<M(heavy n)> > 1.2 [GeV]
<M(heavy Vector B)> > 5600 [GeV]
SUSY+R-Parity: l‘(1,1,1) < 1.1*10**(-4)
Mainz-Troisk: m(n) < 2.2 [eV]
Astro Physics (SDSS): Sum{ m(n) } < 1 to 2 [eV]
Klapdor et al. from 0nbb Ge76 with R-QRPA (no
error of theory included):
0.15 to 0.72 [eV], if confirmed.
THE END
Amand Faessler,
Tuebingen
24
Summary:
Accuracy of Neutrino Masses
by the Double Beta Decay
Dirac versus Majorana Neutrinos
Grand Unified Theories (GUT‘s), R-Parity violatingSupersymmetry →MajoranaNeutrino = Antineutrinos
P
P
P
P
u
d
n
n
d
d
u
n
<m(n)> < 0.47 eV;
u
u
u
d
u
n
l‘ < 1.1*10**(-4)
Direct measurement in the Tritium Beta Decay in Mainz
and Troisk
Klapdor et al.: <mββ> = 0.1 – 0.9 [eV] ; R-QRPA: 0.15 – 0.72 [eV]
THE END
25
3. Neutrino Masses and
Supersymmetry
R-Parity violating Supersymmetry mixes Neutrinos with
Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops,
Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug,
Vergados: Phys. Rev. D )
m(neutrino1) = ~0 – 0.02 [eV]
m(neutrino2) = 0.002 – 0.04 [eV]
m(neutrino3) = 0.03 – 1.03 [eV]
0-Neutrino Double Beta decay
<mββ> = 0.009 - 0.045 [eV]
ββ Experiment: <mββ> < 0.47 [eV]
Klapdor et al.: <mββ> = 0.1 – 0.9 [eV]
Tritium (Otten, Weinheimer, Lobashow)
<m> < 2.2 [eV]
THE END
Amand Faessler,
Tuebingen
26
ν-Mass-Matrix by Mixing with:
Diagrams on the Tree level:
Majorana Neutrinos:
Amand Faessler,
Tuebingen
27
Loop Diagrams:
X
X
Figure 0.1: quark-squark 1-loop contribution to mv
Majorana
Neutrino
Amand Faessler,
Tuebingen
28
X
Block
Diagonalis.
X
Figure 0.2: lepton-slepton 1-loop contribution to mv
(7x7) Mass-Matrix:
Amand Faessler,
Tuebingen
29
7 x 7 Neutrino-Massmatrix:
Basis:
Eliminate Neutralinos in 2. Order:
separabel
{ Mass Eigenstate
Vector in
flavor space
for 2 independent
and
possible
Amand Faessler,
Tuebingen
30
Super-K:
Amand Faessler,
Tuebingen
31
Horizontal U(1) Symmetry
U(1) Field
U(1) charge
R-Parity breaking terms must be without
U(1) charge change (U(1) charge conservat.)
Symmetry Breaking:
Amand Faessler,
Tuebingen
32
How to calculate λ‘i33 (and λi33) from
λ‘333?
U(1) charge conserved!
1,2,3 = families
Amand Faessler,
Tuebingen
33