Actieve koolfiltratie en Duinfiltratie Twee technieken als

Download Report

Transcript Actieve koolfiltratie en Duinfiltratie Twee technieken als

Degradation of organic micropollutants via
Advanced Oxidation Process (UV/H2O2)
Results pilot
plant research
25-09-2009
Josanne Derks
Contents
• Drinking water production from Meuse water
• OMPs in drinking water source
• Theory of AOP via UV/H2O2
• AOP pilot installation
• Results
• Conclusions
• Further research/planning
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
2
Goals of AOP research project
Determine the best UV-technology in terms of energy and formation of by-products
LP, MP, DBD lamps
Influence of excessive peroxide on transport pipelines and dune ponds
Removal of by-products by DSF (AOC, nitrite, deg. products)
Determine necessity of GACF or PAC
Removal by-products and excessive peroxide
Removal of only excessive peroxide
Effect conditioning water on efficiency AOP
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
3
Treatment scheme
Coagulation/sedimentation
Intake Meuse water
Post-treatment locations
Transport pipelines
Transport
Pretreatment
Rapid sand filtration
RSF
The Hague
Intake
Micro sieves
Transport
Dune infiltration
Recovery
Tributary
Meuse River
Dosing of FeSO4
Post-treatment
Distribution
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
4
The river Meuse as source for drinking water
THE NETHERLANDS
Dommel
Niers
FLANDERS
GERMANY
Maastricht
Liège
WALLONIA
Rur
Namur
Charleroi
Ourthe
Sambre
Lesse
CharlevilleMezieres
LUXEMBOURG
Semois
Chiers
FRANCE
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
5
Maximum measured incidental concentration (µg/l) at intake
Diuron
0,15
Glyphosate
0,44
Cafeïne
0,3
Ibuprofen
0,05
Amidotrizoic acid
0,15
Iohexol
0,1
MTBE
1,7
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
6
Atrazine & Glyfosaat in Maas bij Keizersveer
1,2
concentratie [µg/l]
1
0,8
Atrazine
0,6
Glyfosaat
0,4
0,2
0
1989
1991
1994
1997
1999
2002
2005
2008
jaar
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
7
A multitude of compounds and technologies
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
8
AOP and Dune infiltration: complementary
AOP
Dunes
Quick, fast process
Long term process
Chemical oxidation
Biological oxidation and reduction,
adsorption
Short circuiting
Increase of AOC
smoothing
Removal of AOC
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
9
AOP via UV/H2O2
Combination of two degradation mechanisms:
Photolysis:
A0 + hv

A*
Radical formation:
H2O2 + hv

2 ·OH
Combination:
OMP + ·OH + hv

deg. product(s) + CO2 + H2O
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
10
Radical scavenging
Influence water matrix on UV/H2O2
HCO3-
+ ·OH
→
HCO3· + OH-
k = 8,5 * 106 M-1 s-1
CO32-
+ ·OH
→
CO3·- + OH-
k = 3,9 * 108 M-1 s-1
pH RSF = ±8
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
11
Radical scavenging
Influence water matrix on UV/H2O2
NO3-
+ hv
→
NO2-
+O
NO2-
+ ·OH
→
NO2·
+ OH-
k = 1,0 * 1010 M-1 s-1
17,5
0,020
0,018
0,016
0,014
0,012
0,010
0,008
0,006
0,004
0,002
0,000
-0,002
Nitrate [mg/l NO3]
15,0
12,5
10,0
7,5
5,0
2,5
0,0
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Nitrite (mg/l NO2)
Nitrate/nitrite Influent
NO3
NO2
Sep
Date
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
12
Radical scavenging
Influence water matrix on UV/H2O2
H2O2
+ ·OH
→
H2O + H+ + O2-·
k = 2,7 * 107 M-1 s-1
RH
+ ·OH
→
R· + H2O
k = 107 - 1010 M-1 s-1
→
Photolysis ↓ + ·OH-formation ↓
UV-T↓
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
13
UV lamps: Medium pressure vs low pressure
X-ray
Ultraviolet
VUV
UVC
Visible Light
UVB
Infrared
UVA
Wavelength (nm)
200
280 315
400
780
25
2,5
20
2
15
1,5
10
1
5
0,5
0
200
210
220
230
240
250
260
270
280
290
Absorbance H2O2 and water
Lamp emission LP and MP [W/m2]
100
MP
LP
H2O2
Natural water
0
300
Wavelenght [nm]
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
14
AOP UV/H2O2 pilot installation
Settings installation:
-
LP lamps
0,26 kWh/m3
-
MP lamps
0,88 kWh/m3
-
DBD lamps
±0,24 kWh/m3
-
5 m3/hr per reactor
-
Influent: pre-treated Meuse water
Model compounds:
-
Atrazine (10 µg/l),
-
Bromacil (10 µg/l),
-
Ibuprofen (20 µg/l),
-
NDMA (10 µg/l)
Standard experimental settings:
-
UV
100 – 80 – 60%
-
H2O2
10 – 5 – 0 mg/l
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
15
Initial situation reactors
“Coffee test” : investigate the influence of UVT on UV intensity
UV-transmission of coffee solutions in lab test
100
90
80
UV-T in %
70
60
y = 73,612e-0,0183x
R2 = 0,9997
50
40
30
20
10
20
0
18
0
16
0
14
0
12
0
10
0
80
60
40
20
0
0
concentration coffee in ppm
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
16
Initial situation reactors
Zero measurement MP (12-02-09)
GACF
500
300
400
250
GACF
0.000075 vol% coffee
200
RSF
0.000100 vol% coffee
0.000050 vol% coffee
0.000150 vol% coffee
0.000075 vol% coffee
RSF
UV intensity (%)
UV intensity (W/m2)
Zero measurement LP (12-02-09)
300
200
100
0
0.000050 vol% coffee
150
100
0.000100 vol% coffee
50
0.000150 vol% coffee
0
40
50
60
70
Ballast (%)
80
90
100
40
50
60
70
80
90
100
Ballast (% )
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
17
Influent (09-07-2009) DUPLO
18
16
Concentrationl [µg/L]
14
12
Atrazine
10
Bromacil
8
Ibuprofen
NDMA
6
4
2
0
100/10
100/5
100/0
80/10
80/5
80/0
60/10
60/5
60/0
MP Effluent (09-07-2009) DUPLO
18
18
16
16
14
14
Concentrationl [µg/L]
Concentrationl [µg/L]
Setting [%UV / ppm H2O2]
LP Effluent (09-07-2009) DUPLO
12
10
8
6
12
10
8
Atrazine
Bromacil
Bromacil
Ibuprofen
Ibuprofen
NDMA
NDMA
6
4
4
2
2
0
Atrazine
0
100/10
100/5
100/0
80/10
80/5
80/0
Setting [%UV / ppm H2O2]
60/10
60/5
60/0
100/10
100/5
100/0
80/10
80/5
80/0
60/10
60/5
60/0
Setting [%UV / ppm H2O2]
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
18
Degradation of model compounds
MP Degradation (09-07-2009) DUPLO
100%
100%
90%
90%
80%
80%
70%
70%
Degradation [%]
Degradation [%]
LP Degradation (09-07-2009) DUPLO
60%
50%
40%
30%
60%
50%
40%
Atrazine
Atrazine
Bromacil
Bromacil
Ibuprofen
Ibuprofen
NDMA
NDMA
30%
20%
20%
10%
10%
0%
100/10
100/5
100/0
80/10
80/5
80/0
Setting [%UV / ppm H2O2]
60/10
60/5
0%
60/0
100/10
100/5
100/0
80/10
80/5
80/0
60/10
60/5
60/0
Setting [%UV / ppm H2O2]
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
19
EEO = Electrical Energy per Order
MP Electrical Energy per Order (09-07-2009) DUPLO
5
5
4
4
EEO [kWh/m3]
EEO [kWh/m3]
LP Electrical Energy per Order (09-07-2009) DUPLO
3
2
3
2
Atrazine
Atrazine
Bromacil
Bromacil
Ibuprofen
Ibuprofen
NDMA
NDMA
1
1
0
0
100/10
100/5
100/0
80/10
80/5
80/0
60/10
60/5
60/0
100/10
100/5
100/0
80/10
80/5
80/0
60/10
60/5
60/0
Setting [%UV / ppm H2O2]
Setting [%UV / ppm H2O2]
P * UV
EEO =
Q * log (ci/cf)
kWh/m3
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
20
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
21
05
-0
307 200
-0
9
420 200
9
-0
428 200
-0
9
406 200
9
-0
52
19 009
-5
-2
0
2- 09
620
0
11
-6 9
-2
23 009
-6
-2
25 009
-6
-2
0
9- 09
720
0
15
-7 9
-2
23 009
-7
-2
30 009
-7
-2
0
4- 09
820
13
0
-8 9
-2
0
0
20
-8 9
-2
0
26
0
-8 9
-2
00
9
3920
0
89
920
09
05
-0
307 200
9
-0
428 200
9
-0
406 200
9
-0
520
0
19
9
-5
-2
00
9
2620
0
11
9
-6
-2
23 009
-6
-2
25 009
-6
-2
0
9- 09
720
09
15
-7
-2
0
09
23
-7
-2
0
09
30
-7
-2
00
9
4820
09
13
-8
-2
0
09
20
-8
-2
0
09
26
-8
-2
00
9
3920
8- 09
920
09
Degradation (%)
100
100
90
90
80
70
80
60
50
40
30
20
Degradation (%)
05
-0
307 200
9
-0
420 200
-0
9
428 200
9
-0
406 200
9
-0
52
19 009
-5
-2
0
2- 09
620
0
11
-6 9
-2
23 009
-6
-2
25 009
-6
-2
0
9- 09
720
0
15
-7 9
-2
23 009
-7
-2
30 009
-7
-2
0
4- 09
82
13 0 09
-8
-2
20 009
-8
-2
26 009
-8
-2
0
3- 09
920
8- 09
920
09
05
-0
307 200
9
-0
420
28
09
-0
406 200
9
-0
520
0
19
9
-5
-2
00
9
2620
0
11
9
-6
-2
00
23
9
-6
-2
25 009
-6
-2
00
9
9720
09
15
-7
-2
23 009
-7
-2
00
30
9
-7
-2
00
9
4820
09
13
-8
-2
20 009
-8
-2
26 009
-8
-2
00
9
3920
0
9
8920
09
Degradation (%)
100
100
90
90
80
70
80
70
60
50
40
30
20
Degradation (%)
Degradation of model compounds
Degradation Atrazine (100/10)
Date
Degradation Atrazine (100/0)
60
50
40
10
10
0
0
60
50
40
10
10
0
0
MD
MD
LD
30
20
LD
Date
Degradation NDMA (100/10)
Date
Degradation NDMA (100/0)
70
MD
MD
LD
30
LD
20
Date
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
22
Degradation of model compounds
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
23
Mean degradation of model compounds
100
90
80
70
60
50
40
30
20
10
0
100/10
100/5
100/0
80/10
80/5
80/0
60/10
60/5
60/0
100/5
100/0
LD
MD
100/10
100/5
100/0
80/10
80/5
80/0
Setting
Mean degradation NDMA
Mean degradation Ibuprofen
100
90
80
70
60
50
40
30
20
10
0
100/10
100
90
80
70
60
LD
50
MD
40
30
20
10
0
Setting
Mean degradation (%)
Mean degradation (%)
Mean degradation Bromacil
Mean degradation (%)
Mean degradation (%)
Mean degradation Atrazine
80/10
80/5
Setting
80/0
60/10
60/5
60/0
60/10
60/5
60/0
100
90
80
70
LD60
50
MD
40
30
20
10
0
LD
MD
100/10
100/5
100/0
80/10
80/5
80/0
60/10
60/5
60/0
Setting
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
24
-0
5
-0
4
-0
4
-0
4
-0
3
-2
00
-2
00
-2
00
-2
00
9
9
9
Date
9
-2
00
-5 9
-2
0
2- 09
62
11 009
-6
-2
23 009
-6
-2
25 009
-6
-2
0
9- 09
720
0
15
-7 9
-2
23 009
-7
-2
30 009
-7
-2
0
4- 09
820
09
13
-8
-2
0
0
20
-8 9
-2
0
0
26
-8 9
-2
00
9
3920
8- 09
920
09
-0
5
19
0
9
2,5
0
-2
00
2,5
-0
4
9
12,5
-2
00
-2
00
15
12,5
06
-0
4
15
28
07
5
EEO (kWh/m3)
7,5
-0
3
EEO (kWh/m3)
10
05
19
9
-2
00
-5 9
-2
0
2- 09
620
11
0
-6 9
-2
23 009
-6
-2
25 009
-6
-2
0
9- 09
720
15
0
-7 9
-2
0
23
0
-7 9
-2
30 00
-7 9
-2
0
4- 09
820
13
0
-8 9
-2
0
20
0
-8 9
-2
0
26
0
-8 9
-2
00
39
920
8- 09
920
09
06
28
20
07
05
EEO = Electrical Energy per Order
EEO Bromacil (100/10)
EEO Bromacil (100/0)
10
7,5
MD
MD
LD
5
LD
Date
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
25
Mean EEO
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
26
Mean EEO
Mean EEO Bromacil
Mean EEO Atrazine
14
Mean EEO (kWh/m3)
Mean EEO (kWh/m3)
14
12
10
12
10
8
LD
6
MD 6
4
4
2
0
8
LD
MD
2
0
100/10
100/5
100/0
80/10
80/5
80/0
60/10
60/5
60/0
100/10
100/5
100/0
80/10
Setting
80/0
60/10
60/5
60/0
Mean EEO NDMA
Mean EEO Ibuprofen
14
14
Mean EEO (kWh/m3)
Mean EEO (kWh/m3)
80/5
Setting
12
10
12
10
8
LD
6
MD 6
4
4
2
0
8
LD
MD
2
0
100/10
100/5
100/0
80/10
80/5
Setting
80/0
60/10
60/5
60/0
100/10
100/5
100/0
80/10
80/5
80/0
60/10
60/5
60/0
Setting
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
27
Mean EEO
(excluding 0 mg/l H2O2)
Mean EEO Bromacil
Mean EEO Atrazine
Mean EEO
2,5
Mean EEO (kWh/m3)
Mean EEO (kWh/m3)
2,5
2,0
1,5
1,0
0,5
0,0
2,0
1,5
LD
LD
1,0
MD
MD
0,5
0,0
100/10
100/5
80/10
80/5
60/10
60/5
100/10
100/5
Setting
80/5
60/10
60/5
Setting
Mean EEO NDMA
Mean EEO Ibuprofen
2,5
Mean EEO (kWh/m3)
2,5
Mean EEO (kWh/m3)
80/10
2,0
1,5
1,0
0,5
2,0
1,5
LD
LD
1,0
MD
MD
0,5
0,0
0,0
100/10
100/5
80/10
80/5
Setting
60/10
60/5
100/10
100/5
80/10
80/5
60/10
60/5
Setting
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
28
Nitrite formation
15-jul
4-aug
13-aug
3-sep
100/10
100/5
100/0
100/10
100/5
100/0
100/10
100/5
100/0
100/10
100/5
100/0
Concentrations NO2 (mg/l)
Formation factor (-)
IN
EF-LD
EF-MD
EF-LD
EF-MD
0,0016
0,0044
0,5944
1,32
80,65
0,0013
0,0102
0,1409
0,0007
0,0112
0,1636
1,68
361,44
0,0010
0,0131
0,1830
6,77
106,56
0,0023
0,0105
0,4358
15,92
246,88
0,0007
0,0118
0,4896
12,27
183,85
0,0008
0,0046
0,1668
3,57
188,47
0,0837
0,0657
0,5254
15,89
698,49
0,0867
0,0791
0,5915
4,75
207,50
0,0893
0,1018
0,2078
-0,22
5,27
0,0016
0,0044
0,5944
-0,09
5,82
0,0013
0,0102
0,1409
0,14
1,33
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
29
Influence nitrite formation (100/10)
Bromacil (100/10)
Atrazine (100/10)
95
Degradation (%)
Degradation (%)
95
90
85
80
75
90
85
LD
LD
MD
80
MD
70
75
70
4-aug
13-aug
4-aug
Date
Date
NDMA (100/10)
Ibuprofen (100/10)
95
Degradation (%)
95
Degradation (%)
13-aug
90
85
80
75
70
90
85
LD
LD
MD
80
MD
75
70
4-aug
13-aug
Date
4-aug
13-aug
Date
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
30
Influence nitrite formation (100/5)
Bromacil (100/5)
Atrazine (100/5)
80
70
LD
MD
60
Degradation (%)
Degradation (%)
80
50
70
LD
MD
60
50
4-aug
13-aug
4-aug
Date
Date
NDMA (100/5)
Ibuprofen (100/5)
100
70
LD
MD
60
50
Degradation (%)
80
Degradation (%)
13-aug
LD
90
MD
80
4-aug
13-aug
Date
4-aug
13-aug
Date
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
31
Influence nitrite formation (100/0)
Bromacil (100/0)
Atrazine (100/0)
40
60
LD
50
MD
40
Degradation (%)
Degradation (%)
70
30
30
LD
20
MD
10
0
4-aug
13-aug
4-aug
Date
Ibuprofen (100/0)
NDMA (100/0)
50
100
40
30
LD
20
MD
10
0
4-aug
13-aug
Date
Degradation (%)
Degradation (%)
13-aug
Date
90
LD
MD
80
70
4-aug
13-aug
Date
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
32
Influence of DOC
DOC (100/10)
DOC (mg/l C)
3,6
3,4
UV-IN
3,2
UVL-EF
UVM-EF
3
2,8
15-jul
13-aug
3-sep
Date
Bromacil (100/10)
90
90
85
85
Degradation (%)
Degradation (%)
Atrazine (100/10)
80
LD
75
MD
70
80
75
70
65
60
LD
MD
65
60
15-jul
13-aug
Date
3-sep
15-jul
13-aug
3-sep
Date
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
33
Influence of DOC
DOC (100/10)
DOC (mg/l C)
3,6
3,4
UV-IN
3,2
UVL-EF
UVM-EF
3
2,8
15-jul
13-aug
3-sep
Date
NDMA (100/10)
90
90
85
85
Degradation (%)
Degradation (%)
Ibuprofen (100/10)
80
80
LD
75
MD
70
75
70
65
60
LD
MD
65
60
15-jul
13-aug
Date
3-sep
15-jul
13-aug
3-sep
Date
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
34
Formation of AOC
?
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
35
Increased UVT via GAC
Influent
RSF
8-sep
UVT
pH
Bicarbonate
Carbonate
Ammonium
Ammonium
Nitrite
Nitrite
Nitrate
Nitrate
DOC
%
mg/l HCO
mg/l CO3
mg/l NH4
mg/l N
mg/l NO2
mg/l N
mg/l N
mg/l NO3
mg/l C
±78
7,91
140
0
0,012
0,009
0,005
0,001
2,20
9,72
3,17
GACF
10-sep
±98
8,69
120
6,05
0,005
0,004
0,629
0,192
1,15
5,08
0,23
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
36
Influence increased UVT
LP Degradation (10-09-09)
100%
100%
90%
90%
80%
80%
70%
70%
Degradation (%)
Degradation (%)
LP Degradation (8-09-09)
60%
50%
40%
30%
60%
50%
40%
Atrazine
Bromacil
Bromacil
Ibuprofen
Ibuprofen
NDMA
NDMA
30%
20%
20%
10%
10%
0%
Atrazine
0%
100/10
100/0
80/10
80/0
60/10
60/0
100/10
100/0
Setting (%UV / ppm H2O2)
80/0
60/10
60/0
MP Degradation (10-09-09)
MP Degradation (8-09-09)
100%
100%
90%
90%
80%
80%
70%
70%
Degradation (%)
Degradation (%)
80/10
Setting (%UV / ppm H2O2)
60%
50%
40%
30%
60%
50%
40%
Atrazine
Bromacil
Bromacil
Ibuprofen
Ibuprofen
NDMA
NDMA
30%
20%
20%
10%
10%
0%
Atrazine
0%
100/10
100/0
80/10
80/0
Setting (%UV / ppm H2O2)
60/10
60/0
100/10
100/0
80/10
80/0
60/10
60/0
Setting (%UV / ppm H2O2)
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
37
Influence increased UVT
LP EEO (10-09-09)
7
7
6
6
5
5
EEO (kWh/m3)
EEO (kWh/m3)
LP EEO (8-09-09)
4
3
2
1
Atrazine
Atrazine
4
Bromacil
Bromacil
3
Ibuprofen
Ibuprofen
NDMA
NDMA
2
1
0
0
100/10
100/0
80/10
80/0
60/10
60/0
100/10
100/0
Setting (%UV / ppm H2O2)
80/0
60/10
60/0
MP EEO (11-09-09)
MP EEO (8-09-09)
7
7
6
6
5
5
EEO (kWh/m3)
EEO (kWh/m3)
80/10
Setting (%UV / ppm H2O2)
4
3
2
1
Atrazine
Atrazine
4
Bromacil
Bromacil
3
Ibuprofen
Ibuprofen
NDMA
NDMA
2
1
0
0
100/10
100/0
80/10
80/0
Setting (%UV / ppm H2O2)
60/10
60/0
100/10
100/0
80/10
80/0
60/10
60/0
Setting (%UV / ppm H2O2)
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
38
Conclusions
Degradation by LP comparable to MP
Average degradation NDMA by LP higher then MP
EEO LP < EEO MP
MP shows higher nitrite formation
MP converts/consumes more DOC
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
39
Further research topics
Influence water temperature on UV dose
Linearity UV ballast – UV dose
Degradation DOC / formation AOC
Nitrite/nitrate issues
Degradation remaining peroxide
Improvement quality influent water
By- and degradation products
Modelling of degradation
Goals - DW production – OMPs in source – Theory – PI – Results – Conclusions – Further research
40
Thank you for
listening!
Questions/remarks?