Transcript Slide 1

Parity Violating Neutron Densities
Z
0
of Weak Interaction :
Clean Probe Couples Mainly to Neutrons
( T.W. Donnelly, J. Dubach, I Sick )
2
Low Q
elastic nucleus scattering
In PWIA -- but must account for Coulomb
distortions (C. J. Horowitz)
GF Q 2
A 
2 2
dA
 3% 
A
PN12 Workshop
JLab, Nov 2004
2
F n (Q ) 

2
1

4
sin


W

FP (Q 2 ) 

dRn
 1%
Rn
R. Michaels
Jefferson Lab
Parity Violating Asymmetry
APV
R  L

R  L
2


e
+
Z0
e
Applications :
• Nucleon Structure (strangeness)
• Nuclear Structure (neutron density)
• Standard Model tests ( sin2 W )
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
0
Z sees the neutrons
proton
neutron
Electric charge
1
0
Weak charge
0.08
1
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
PREX in Hall A at JLab
Lead Foil
Target
Polarized eSource
Hall A
PN12 Workshop
JLab, Nov 2004
Pol. Source
Hall A
CEBAF
R. Michaels
Jefferson Lab
Physics Impact
of
Lead Parity
Measured Asymmetry
Correct for Coulomb
Distortions
Weak Density at one Q 2
Mean Field
& Other
Models
Small Corrections for
Atomic
Parity
Violation
G
n
E
s
GE
MEC
2
Neutron Density at one Q
Assume Surface Thickness
Good to 25% (MFT)
Neutron
Stars
Rn
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
Lead Parity: pins down the symmetry energy (1 parameter)
( R.J. Furnstahl )
PN12 Workshop
JLab, Nov 2004
energy cost for unequal #
protons & neutrons
R. Michaels
Jefferson Lab
Pb Parity : Neutron Stars
( C.J. Horowitz, J. Piekarweicz )
R n calibrates EOS of
Neutron Rich Matter
Crust Thickness
Explain Obs. Glitches in Pulsar Frequency ?
Combine R n with
Neutron Star Radius
Exotic Core ? (strange matter, quark star)
Some Neutron Stars
too Cold
Cooling by neutrino emission (URCA)
Crab Pulsar
( from hubblesite.org )
PN12 Workshop
JLab, Nov 2004
Rn  Rp  0.2 fm
URCA probable, else not
R. Michaels
Jefferson Lab
Optimum Kinematics for Lead Parity:
<A> = 0.5 ppm.
E = 850 MeV,
Accuracy in Asy 3%
1 month run
1% in Rn
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
High Resolution Spectrometers
Spectrometer Concept:
Resolve Elastic
Elastic
detector
Inelastic
Quad
target
Dipole
PN12 Workshop
JLab, Nov 2004
Q Q
R. Michaels
Jefferson Lab
Septum Magnets (INFN)
•Superconducting magnets
•Commissioned 2003-4
Electrons scattered
at 6 deg sent to the
HRS at 12.5 deg.
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
Integrating Detection
• Integrate in 30 msec helicity period.
• Deadtime free.
• 18 bit ADC with < 10
•
-4
But must separate backgrounds & inelastics (
HRS).
Integrator
Calorimeter (for lead, fits in palm of hand)
PMT
PN12 Workshop
JLab, Nov 2004
nonlinearity.
ADC
R. Michaels
Jefferson Lab
Lead Target
208
Pb
Successful ly tested at 80 A
Liquid Helium
Coolant
12
beam
C
Diamond Backing:
• High Thermal Conductivity
• Negligible Systematics
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
Polarized Electron Source
Laser
GaAs Crystal
Gun
Pockel Cell
Halfwave plate
flips helicity
(retractable, reverses helicity)
e - beam
• Rapid, random helicity reversal
• Electrical isolation from rest of lab
• Feedback on Intensity Asymmetry
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
Beam Asymmetries
Araw = Adet - AQ + E+ ixi
Slopes from
PN12 Workshop
JLab, Nov 2004
•natural beam jitter (regression)
•beam modulation (dithering)
R. Michaels
Jefferson Lab
Helicity Correlated Differences: Position, Angle, Energy
“Energy” BPM
Scale +/- 100 nm
BPM Y2
Position Diffs avg
~ 10 nm
BPM Y1
Negligible
Systematic Error
BPM X1
BPM X2
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
Polarimetry
Møller: dPe/Pe ~ 3 % (foil polarization)
Compton: 2% syst. At present
2 analyses based
on either electron
or photon detection
Electron only
Photon only
Superlattice:
Pe=86% !
PN12 Workshop
JLab, Nov 2004
Preliminary: 2.5% syst ( only)
R. Michaels
Jefferson Lab
Upgrade of Compton Polarimeter
(Nanda, Lhuillier)
To reach 1% accuracy:
• Green Laser
• Integrating Method
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
Summary -- Neutron Skin
• R n is Fundamental to Nuclear Physics
• HAPPEX program to demonstrate most
technical aspects
• Polarimetry Upgrade needed
• Planned 2-day test run in 2005
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
extra slides --
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
Moller Polarimetry with
Atomic Hydrogen Target
( E. Chudakov, V. Luppov)
H atoms
Ultra Cold Traps
• Polarization ~ 100%
• Density 3  1015 cm3
Solenoid 8T
• Lifetime > 10 min
Polarimetry
beam
Trap
• 1% stat. err. in 30 min at 30 A
• Low background
• High beam currents allowed (100 A)
• Goal: ~ 0.5 % systematic error
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
Polarized
Source
High Pe
High Q.E.
Low Apower
•Optical pumping of
solid-state
photocathode
•High Polarization
controls
effective
analyzing
power
Intensity
Attenuator
PN12 Workshop
JLab, Nov 2004
Slow helicity
reversal
Tune
residual
linear pol.
• Pockels cell
allows rapid
helicity flip
•Careful
configuration to
reduce beam
asymmetries.
•Slow helicity
reversal to further
cancel beam
asymmetries
R. Michaels
Jefferson Lab
Beam Modulation to Calibrate Sensitivity to Beam Systematics
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab
PITA
Effect
Polarization Induced Transport Asymmetry
Intensity Asymmetry AI    sin( )
Tx  Ty
where  
Tx  Ty
Laser at
Pol. Source
Transport Asymmetry
 drifts, but slope is
~ stable.
Feedback on 
PN12 Workshop
JLab, Nov 2004
R. Michaels
Jefferson Lab