Transcript F. Ludwig
EUROFEL DS3-DS4 Task Meeting, 17/05/05 ‚Multi-channel RF Amplitude and Phase Detector‘ Frank Ludwig, DESY Content : 1 Stability requirements on phase and amplitude 2 Available technologies and selection of the detector concept 3 Proposed LLRF system for optimized detector operation 4 Status of the multi-channel EUROFEL LLRF-detectors 5 Future work and open questions Frank Ludwig, DESY Stability requirements on phase and amplitude Stability requirements on phase and amplitude of the vector sum of the cavity field vector : Amplitude stability : δA 5 10 5 and linearity A Phase stability : δφ 0.01 δφ δA A δU EUROFEL 50 μV (normalized to A=1V) Requirements on the detectors linearity and noise: Amplitude stability and linearity : - 43dB dynamic range of signal-to-noise - 50dB linearity of down-converters - Low-noise design - Reduce the measuring bandwidth depending on LLRF-concept! RMS-voltage noise of the detector : δU SU f SU 50nV / Hz , f 1MHz Without gain from vector sum Frank Ludwig, DESY Available technologies and selection of the detector concept Passive Mixer + GaAs FET: + High linearity + Low NF - Large LO drive needed - Low LO/RF isolation P(RF) P(LO) P(IF) NF IP3 1dB MS11 PS11 MS22 PS22 MS33 PS33 Gain RF to IF isol IF RF iso LO RF iso LO IF IF(min) dBm dBm dBm dB dBm dBm dB deg dB deg dB deg dB deg dB dB dB MHz Active Mixer (Gibert cell): + High conversion gain + Low LO drive needed + High LO/RF isolation - Normal NF - Additional 1/f-noise HMC439: phase detector SiGe + Low NF, - Limited to 1.3GHz AD8347 : quadrature demodulator - to be tested in ‚parallel‘ down up down down down down down down down down down LT5522 LT5521 LT5526 MC1502 CDB-9050 DBM-182 MBA-15L HMJ7 HMJ7-1 IAM-92516 AD8343 -7 -15 -10 -5 -10 -10 -10 -10 -12 -5 -5 -5 7 -5 7 21 21 -3 -10 -7 13,2 12,5 12,3 7,5 15 8,5 8,5 10,5 12,5 14,1 25 24,2 16,5 12 -3 34 34 27 16,5 10,8 11 5 0 23 23 9 2,8 -0,4 -0,5 0,5 6 6 -7,5 50 49 0,1 38 59 10 55 55 0,1 30 25 0 33 35 30 25 20 0 -6,5 Other detectors : -8,5 -8,5 -5,5 24 24 24 30 34 56 0 AD8302 : gain, phase monitor + good temperature stability - worse NF AD8343 LT5522 7,1 Multi-channel detector : Frank Ludwig, DESY 14 0 54 0 Gilbert cell mixer Actual down-converter (AD8343+OPAmp) operating at 1.3GHz (Designed by G.Möller/DESY/MHF-p) + High LO/RF isolation - RF-range [DC-2.5GHz] - Mixing into baseband caused additional noise 8-channels from cavity probe : PRF [40dBm,10dBm] 70dB linearity Frank Ludwig, DESY 8-channels to ADC-Board : SU 70nV / Hz LO-Input : PLO 5dBm Noise characterization of the actual down-converter Noise from sensor (down-converter-board) : δU 4.0 δU EUROFEL , f 10 MHz δU 1.2 δU EUROFEL , f 1MHz PRF [40dBm,10dBm], 70dB linearity Linearity versus noise PIF P1dB 1db compression point SU , Crosstalk, isolation, leakage problems 4.5nV / Hz SU , AMP 7nV / Hz SU 70nV / Hz f RF 1300MHz v 8.5 Noise floor f LO 1300MHz Noise problems PRF Frank Ludwig, DESY SU (SU , SU , AMP ) v 2 Proposed LLRF system for optimized detector operation Measuring bandwidth : Proposed LLRF control system operating with a CW LO-signal : Master-Oscillator f 1MHz high-power cavity klystron 1300-81 (2997-81) Jitter conversion : down-converter LO-input 1300-81 (2997-81) RF-input 1300 (2997) t f LO 81=9 x 9 Undersampling and Averaging ADC-clock + Filtering of higher harmonics and distortions. + Measuring bandwidth can be minimized (Noise reduction by a factor of 3...5). + No noise from LO-driver. Precise synchronization of ADC-clocks and clock jitter must average. Frank Ludwig, DESY f RF T f IF T 370 fs FPGA - f RF f IF DAC-clock t 10 fs Status of the multi-channel EUROFEL LLRF detectors Structure of single down-converter (discrete prototype) : ADC clock 36 MHz (from MO) LO-input BPF -5dBm 1300-81 MHz (2997-81 MHz) (from MO) Attenuator 36 MHz Undersampling 1291 MHz (2916 MHz) Stripline Filter LO Input Matching Circuit Active Mixer LT5522 (LT5527) 81MHz SMD-Filter Low-Noise-Amplifier Evaluation Board 1300 MHz (2997 MHz) Stripline Filter BPF RF-input 1300 MHz 2997 MHz IF Output Matching Circuit BPF AD6645 Input Matching Circuit LNA Output Matching Circuit 14 Bit, 80 MSPS, 100fs jitter Manufactured in stripline design. Frank Ludwig, DESY 14 Future work Next steps : - Measure performance of the disrete single channel down-converter prototype at 1.3GHz with existing Master-Oscillator at DESY. - Performance evalution in the accelerator environment. - Redimension RF-filters to 3GHz and build a single channel detector on one board. - Design multi-channel board. - Optimize shielding and minimize channel crosstalk. - Integrate FPGA (data preprocessing), Gigalink or Fiberlink onto the board. Questions to be answered : - Noise performance of LLRF system including the Master-Oscillator achitecture. - Determine residual jitter of the LLRF concepts. - Check alternatives to overcome the mixers noise limitation : Passive mixer + RF-Transformer + LNA interferometric techniques Seperate farm of phase and amplitude detectors (Hittite, Analog Devices, Linear Tech.) Integrated farm of Gilbert cell mixers. - Chipdesign using InP-HEMTs (promise higer gain and lower noise). Frank Ludwig, DESY