Transcript Document
Energy and system size dependence in string-hadronic models Elena Bratkovskaya FIAS, J.W. Goethe Universität Frankfurt am Main 01.04.2005, Bergen ‚Little Bangs‘ in the Laboratory Initial State Hadronization time Au Au hadron degrees of freedom Quark-Gluon-Plasma ? quarks and gluons hadron degrees of freedom How can we proove that an equilibrium QGP has been created in central Au+Au collisions ?! The QGP in Lattice QCD Lattice QCD: Quantum Cromo Dynamics (fundamental theory of quark-gluon interactions ): predicts strong increase of the energy density at critical temperature TC ~170 MeV 14 12 4 10 /T Possible phase transition from hadronic to partonic matter (quarks, gluons) at critical energy density C ~1 GeV/fm3 energy density versus temperature 8 Lattice QCD: B=0 B=530 MeV 6 4 2 0 0.5 Tc = 170 MeV 1.0 1.5 2.0 2.5 3.0 T/Tc Z. Fodor et al., PLB 568 (2003) 73 Critical conditions - C ~1 GeV/fm3 , TC ~170 MeV - can be reached in heavy-ion experiments at bombarding energies > 5 GeV/A The phase diagram of QCD 250 200 T [MeV] • UrQMD initial energy endpoint (2+1 flavor lattice QCD) [Fodor, Katz '04] endpoint density is higher than the boundary from LQCD (3 flavor lattice QCD) [Karsch et al., QM'04] phase boundary 150 endpoint (2+1 flavor lattice QCD) [Fodor, Katz '02] somewhere between 20 and 30 A GeV 100 UrQMD: Au+Au, 11 A GeV Pb+Pb, 40 A GeV Pb+Pb, 160 A GeV Au+Au, 21300 A GeV 50 •-> we are probing a new chemical freezout [Cleymans et al.] phase of matter already at AGS! 0 0 200 400 600 B [MeV] 800 1000 •Tri-critical point reached 1200 Quark condensate in central Au+Au __ __ Au+Au, 6 A GeV (central) 1.0 30 40 0.0 10 0.5 20 1.0 0.5 0.0 10 0.5 20 30 40 20 10 0 -10 -20 1.0 0.0 10 20 30 40 20 30 z [fm] 40 0.0 10 30 40 0.0 10 30 z [fm] 40 20 40 0.5 20 30 40 20 10 0 -10 -20 0.0 10 20 30 40 z [fm] 40 20 10 0 -10 -20 0.0 10 30 40 0.0 10 20 30 40 40 time=16 fm/c 20 30 40 0.0 10 20 time=11 fm/c 0.0 10 30 0.5 20 10 0 -10 -20 30 20 10 0 -10 -20 40 time=20 fm/c 1.0 0.5 z [fm] 20 20 10 0 -10 -20 1.0 1.0 20 10 0 -10 -20 0.0 10 time=9 fm/c time=5 fm/c 0.5 30 20 0.5 20 10 0 -10 -20 1.0 20 0.0 10 0.5 20 10 0 -10 -20 1.0 time=20 fm/c 0.0 10 30 1.0 0.5 20 0.5 20 10 0 -10 -20 time=13 fm/c 1.0 time=3 fm/c 1.0 20 10 0 -10 -20 0.0 10 time=16 fm/c time=11 fm/c 0.5 20 10 0 -10 -20 20 0.5 20 10 0 -10 -20 1.0 0.5 0.0 10 1.0 time=5 fm/c 0.0 10 40 20 10 0 -10 -20 time=7 fm/c 1.0 0.5 time=9 fm/c time=3 fm/c 1.0 30 20 10 0 -10 -20 x [fm ] 20 1.0 x [fm ] 0.5 20 10 0 -10 -20 time=1 fm/c time=13 fm/c x [fm ] 1.0 0.5 0.0 10 time=7 fm/c x [fm ] 1.0 Au+Au, 20 A GeV (central) x [fm ] time=1 fm/c __ <qq(x,0,z;t)> / <qq>V 0.5 20 30 z [fm] 40 20 10 0 -10 -20 •Quark condensate drops to zero already at lower AGS energies! •-> we are probing a new phase of matter already at AGS! 0.0 10 20 30 z [fm] 40 20 10 0 -10 -20 x [fm ] __ <qq(x,0,z;t)> / <qq>V HSD calculations: NPA 674 (2000) 249 Signals of QGP • Strangeness enhancement • Charm suppression • Collective flow (v , v ) 1 2 • further signals of QGP: (not covered in this talk) Multi-strange particle enhancement in Au+Au Jet quenching and angular correlations High pT suppression of hadrons Nonstatistical event by event correlations ... Concepts: HSD & UrQMD HSD – Hadron-String-Dynamics transport approach UrQMD – Ultra-relativistic-Quantum-Molecular-Dynamics •Solution of the transport equations with collision terms describing: elastic and inelastic hadronic reactions: baryon-baryon, meson-baryon, meson-meson formation and decay of baryonic and mesonic resonances string formation and decay Implementation of detailed balance on the level of 1<->2 and 2<->2 reactions (+ 2<->n multi-meson fusion reactions in HSD) • •Degrees of freedom: baryons + mesons including excited states strings; q, qbar, (qq), (qbar qbar) (no gluons!) HSD & UrQMD – microscopic models for heavy-ion reactions • very good description of particle production in pp, pA reactions • unique description of nuclear dynamics from low (~100 MeV) to ultrarelativistic (21.3 TeV) energies HSD 1999 predictions 4p yield dN/dy (y=0) + + p 10 10 2 E866 E895 NA49 PHENIX BRAHMS STAR HSD UrQMD 1.3 10 1 10 p 3 E895 NA49 BRAHMS 2 HSD UrQMD 1.3 10 1 - - p Particle yields 10 10 2 E895 NA49 PHENIX BRAHMS STAR 10 10 10 10 10 10 p 3 • E895 NA49 BRAHMS 2 2 1 K 0 E866 NA49 PHENIX BRAHMS STAR + 10 10 10 1 10 0 K -1 10 E866 NA49 PHENIX BRAHMS STAR - -2 10 Excitation function of p+, K+, (L+S0) yields 10 1 K + E866 NA49 BRAHMS • Reasonable description of strangeness by HSD and UrQMD HSD overestimates pions at low AGS 0 • 2 1 0 K -1 - E866 NA49 BRAHMS 10 UrQMD overestimates pions at top AGS and above -2 10 15 90 10 0 (deviations < 20%) 60 L +S 5 0 E877 NA49 WA97 0 10 L +S 30 E877 NA49 0 0 10 1 10 2 10 3 Elab/A [GeV] 10 4 10 0 10 1 10 2 10 3 Elab/A [GeV] 10 4 PRC 69 (2004) 015202 Excitation function of K+/p+, K-/p-, (L+S0)/p ratios + + K /p y=0 0.25 4p 0.25 0.20 0.20 0.15 0.15 + + <K >/<p > 0.10 0.10 E866 NA49 PHENIX STAR BRAHMS, 5% BRAHMS, 10% 0.05 E866 NA49 BRAHMS, 5% 0.05 0.00 0.00 10 0 10 1 10 2 10 3 10 4 0.25 10 0 10 1 2 10 10 3 4 10 0.25 - - - 0.20 0.20 HSD UrQMD 1.3 0.15 0.15 0.10 0.10 0.05 E866 NA49 PHENIX STAR BRAHMS, 5% BRAHMS, 10% 0.00 10 0 10 1 10 2 10 3 - <K >/<p > K /p 10 0.05 E866 NA49 BRAHMS, 5% 0.00 4 0.08 HSD UrQMD 1.3 Experimental K+/p+ ratio shows a peak at ~30 A GeV -,horn‘which is not reproduced by the transport approaches HSD and UrQMD ! 10 0 10 1 2 10 10 3 4 10 0.08 0 0 <L+S >/<p> (L+S ) / p 0.06 0.06 E877 NA49 STAR 0.04 0.02 E877 NA49 0.04 0.02 0.00 0.00 10 0 10 1 10 2 10 Elab/A [GeV] 3 10 4 10 0 10 1 2 10 10 Elab/A [GeV] 3 4 10 PRC 69 (2004) 015202 Transverse mass spectra - barometer of the reaction 10 C+C, 160 A GeV, 17.5%, 3.0 < y lab < 3.23 2 HSD UrQMD -2 1/mT dN/dmTdy [(GeV) ] - 10 10 10 10 10 p 1 K 0 mT=(m2+pT2)1/2 – transverse mass T - inverse slope parameter + -1 - K *0.1 -2 -3 0.0 0.2 0.4 0.6 0.8 1.0 Si+Si, 160 A GeV, 12.5%, 3.0 < y lab < 3.23 10 2 - p HSD UrQMD -2 1/mT dN/dmTdy [(GeV) ] 1 dN exp - mT T m T dm T 10 1 K 10 • Exp. data for light systems C+C + 0 and Si+Si at 160 A GeV are reasonably described by HSD and UrQMD - K *0.1 10 10 HSD & UrQMD 2.0: • Transverse mass spectra of p+, K+ from p+p and p+A collisions are well reproduced at all energies -1 -2 0.0 0.2 0.4 0.6 0.8 1.0 mT-m0 [GeV] PRL 92 (2004) 032302 mT spectra for Au+Au from AGS to RHIC 10 4 10 3 10 2 10 1 10 4 10 Au+Au, 4 A GeV, 5%, midrapidity p -1 10 -2 10 4 10 3 10 2 10 1 10 0 -2 1/mT dN/dmTdy [(GeV) ] -1 10 -2 10 10 3 10 2 10 1 10 K 0 10 10 -2 10 4 10 3 10 K + 0 10 - K *0.1 NA49 HSD UrQMD -1 10 - K *0.1 -2 10 4 10 Au+Au, 6 A GeV, 5%, midrapidity p Pb+Pb, 40 A GeV, 7%, midrapidity 3 10 + p 2 HSD 2.0 & UrQMD 2.0: - 10 K 1 10 + 0 + - 10 K *0.1 -1 Pion slopes are only slightly underestimated by transport 10 - -2 10 4 10 Au+Au, 8 A GeV, 5%, midrapidity p 3 10 + p Pb+Pb, 80 A GeV, 7%, midrapidity - 2 10 1 K -1 - + K *0.1 4 p 2 1 K 10 Pb+Pb, 30 A GeV, 7%, midrapidity 3 10 HSD UrQMD 10 0 10 E866/E917 E895 + K + 10 + 0 10 - -- K *0.1 -1 K *0.1 10 -2 10 4 10 2 10 1 10 0 10 Au+Au, 11 A GeV, 5%, midrapidity p Pb+Pb, 160 A GeV, 5%, midrapidity 3 10 + p - 2 K 10 + K - 10 -1 10 -2 10 -3 + 1 10 - K *0.1 0 10 K *0.1 -1 10 10 3 10 2 Pb+Pb, 20 A GeV, 7%, midrapidity p 10 1 10 0 - 3 10 K + 10 10 -2 10 -3 0.0 p K - + 1 10 - -1 Au+Au, s =200 GeV, 5%, midrapidity 2 K *0.1 10 1/2 4 10 Kaon slopes are too low above 5 A GeV! - 0 K *0.1 10 STAR BRAHMS PHENIX -1 10 -2 10 0.2 0.4 0.6 mT-m0 [GeV] 0.8 1.0 0.0 0.2 0.4 0.6 0.8 mT-m0 [GeV] 1.0 PRC 69 (2004) 015202 ‚Alternative‘ scenarios (HSD) •Hadronic medium effects should happen: but practically don‘t enhance high mT-spectra (~10%) •String-string interaction –> overlapping strings small effect on mT-slope with transverse string radius Rs~0.25fm (depends on Rs) •Isotropic decay of meson-baryon strings inconsistent with other observables (stopping and larger meson production) •Nonleading parton (quark/diquark) elastic scattering with s el(qq) =selpN/NQuark low effect at AGS, strong at RHIC, but hadron multiplicities become too high • Reduced formation time t ->0 : too large hadron multiplicities •. . . F In all cases the ‚improvement‘ on the mT slope is small or inconsistent with other observables! PRC 69 (2004) 015202 ‚Alternative‘ scenarios: High mass baryon resonances - UrQMD 2.1 UrQMD 2.1 - model in spirit of RQMD: • • • mB strings of invariant mass 2 < M < 3 GeV are replaced by quasiparticles (= high mass resonances) that decay isotropically according to the Br of the heaviest implemented resonance with the same quantum numbers light meson (p,K) emission is suppressed by ~ 25% compared to a string of the same invariant mass Isotropic mB elastic scattering instead of forward peaked leading hadron scattering Strangeness suppression factor gS has been enhanced from gS =0.3 (UrQMD 1.3 or 2.0) to 0.5 (UrQMD 2.1) more strangeness production ! Improves T-slope, however, is inconsistent with other observables! PRC 69 (2004) 015202 Cronin effect at RHIC (HSD) Cronin effect: initial state semi-hard gluon radiation increases pT spectra already in p+A or d+A 2 1/N event d N dA /dydp T dA R dA (p T ) inelas Modelling of the Cronin effect < N coll > /σ pp dσ pp /dydp T in HSD: <kT2>AA = <kT2>PP (1+a NPrev) NPrev= number of previous collisions parameter a = 0.25 – 0.4 W. Cassing, K. Gallmeister and C. Greiner, Nucl. Phys. A 735 (2004) 277 HSD with Cronin eff HSD without Cronin eff . . Cronin effect on p, K+ mT-spectra in A+A (HSD) -1 -2 mT dN/(dmTdy) [(GeV) ] HSD with Cronin effect 10 10 10 10 - p Au+Au, 11 A GeV, 5%, midrapidity 2 1 K + 0 - 10 10 K *0.1 -1 -2 10 10 0.2 0.6 0.8 1.0 p - • Substantial hardening of the mT spectra at RHIC –> large improvement ! 2 + 1 - 10 10 10 K *0.1 0 -1 -2 0.0 -2 -1 • Hardening of the mT spectra at top SPS Pb+Pb, 160 A GeV, 5%, midrapidity 3 K 10 0.4 -1 -2 mT dN/(dmTdy) [(GeV) ] 0.0 mT dN/(dmTdy) [(GeV) ] • Very small effect at AGS 3 10 10 10 0.2 p 3 K 2 0.4 0.6 0.8 1.0 1/2 - Au+Au, s =200 GeV, 5%, midrapidity • Consistent with other observables ! default with Cronin effect + 1 - 10 10 K *0.1 0 -1 0.0 0.5 1.0 1.5 mT-m0 [GeV] 2.0 2.5 PRC 69 (2004) 015202 Inverse slopes T for K+ and K+ 0.35 T [GeV] 0.30 Au+Au / Pb+Pb -> K +X HSD HSD with Cronin eff. UrQMD 2.0 0.30 0.25 0.25 0.20 0.20 0.15 0.10 E866 NA44 BRAHMS 10 NA49 STAR PHENIX p+p -> K +X + 10 100 - T [GeV] 0.35 0.30 Au+Au / Pb+Pb -> K +X HSD HSD with Cronin eff. UrQMD 2.0 0.30 0.25 0.25 0.20 0.20 0.15 0.15 0.10 E866 NA44 BRAHMS 10 s NA49 STAR PHENIX 100 1/2 [GeV] - 0.35 0.10 p+p -> K +X - 0 • In UrQMD and HSD hadronic rescattering has only a small impact on the kaon slope 0 exp. data: K; KS FRITIOF-7.02 in HSD UrQMD 2.0 0.15 0.10 100 + 0.35 exp. data: K; KS FRITIOF-7.02 in HSD UrQMD 2.0 • Cronin effect - initial state semi-hard gluon radiationleads to the substantial hardening of the mT spectra at RHIC, however, has a very small effect at low energies || • The hadron-string picture 10 100 s 1/2 [GeV] fails? > New degrees of freedom (colored partons – qC, ga) are missing ?! PRL 92 (2004) 032302 PRC 69 (2004) 015202 Directed flow v1 & elliptic flow v2 Y Non central Au+Au collisions : interaction between constituents leads to a pressure gradient => spatial asymmetry is converted to an asymmetry in momentum space => collective flow v 1 < px - py 2 px py 2 2 v 2 < - directed flow px > pT 2 > - elliptic flow V2 > 0 indicates in-plane emission of particles Out-of-plane dN dN 1 1 2v1cos( ) 2v 2cos(2 ) ... dyp Tdp Td dyp Tdp T 2π Y In-plane X V2 < 0 corresponds to a squeeze-out perpendicular to the reaction plane (out-of-plane emission) v2 = 7%, v1=0 v2 = 7%, v1=-7% v2 = -7%, v1=0 Directed flow v1 & elliptic flow v2 for Pb+Pb at 40 A GeV 0.2 Pb+Pb, 40 A GeV protons 0.2 0.1 0.0 0.0 -0.1 -0.1 central -0.2 -2 -1 0 1 2 0.2 NA49 HSD UrQMD 0 1 2 0.05 •Too large elliptic flow v 2 at midrapidity from HSD and UrQMD for all centralities ! 0.00 -0.1 -0.05 semi-central -1 0 1 2 -0.10 -2 0.10 0.1 0.05 NA49 HSD UrQMD -1 semi-central 0 1 2 0.0 0.00 -0.1 Experimentally: breakdown of v2 at midrapidity ! Signature for a first v2 v1 0.2 -0.2 -2 -1 0.10 0.0 -0.2 -2 central v2 v1 0.1 -0.2 -2 1 at midrapidity not described by HSD and UrQMD v2 v1 0.1 •Small wiggle in v Pb+Pb, 40 A GeV protons order phase transition ! -0.05 peripheral pT < 2 GeV/c -1 0 y 1 2 -0.10 -2 peripheral pT < 2 GeV/c -1 0 y 1 2 H. Stöcker, NPA 750 (2005) E.B. et al., JPG 31 (2005) Directed flow v1 for Au+Au at RHIC + 0.04 • v1 is flat at midrapidity for protons, pions and 1/2 Au+Au->h +X, s =200 GeV semi-central v1 () 0.02 kaons • HSD shows slightly larger flow than UrQMD 0.00 -0.02 STAR (10-70%) PHOBOS (6-55%) UrQMD 1.3 (10-70%) HSD 2.0 (10-70%) -0.04 -5 -4 -3 -2 -1 0 1 2 3 4 5 0.10 0.10 v1(y) 1/2 0.05 1/2 Au+Au, s =200 GeV 4 fm < b < 8 fm 0.05 0.00 -0.05 Au+Au, s =200 GeV 4 fm < b < 8 fm 0.00 UrQMD 1.3 : p p 0 y p -0.05 + K -0.10 -5 -4 -3 -2 -1 HSD: p + 1 + K 2 3 4 5 -0.10 -5 -4 -3 -2 -1 0 y + 1 2 3 4 5 JPG 31 (2005) Elliptic flow v2 in Au+Au at RHIC 0.3 1/2 0.06 Au+Au, s =200 GeV charged particles STAR 0.05 HSD, pT>2 GeV/c 0.2 0.03 <v2> v2 0.04 0.02 PHOBOS HSD 0.01 huge plasma pressure?! 0.1 0.00 -6 -4 -2 0 2 4 6 0.10 1/2 Au+Au, s =200 GeV charged particles ||<1 0.08 0.0 0 100 200 300 N part v2 0.06 • STAR data on v2 of high pT charged 0.04 hadrons are NOT reproduced in the hadron-string picture => PHOBOS HSD 0.02 0.00 0 50 100 150 200 250 300 350 400 Apart evidence for huge plasma pressure ?! • PHOBOS data on v2 for charged hadrons (all pT) are underestimated in HSD by ~30% PRC 67 (2003) 054905 W. Cassing, K. Gallmeister and C. Greiner, Nucl. Phys. A 735 (2004) 277 Charmonium in heavy-ion collisions D J/Y Y‘ cC Dbar ‚Charmonium production versus absorption‘ Obviously: there should be ‚normal‘ nuclear absorption, i.e. dissociation of charmonium by inelastic interactions with nucleons of the target/projectile Charmonium-N dissociation cross section can be fixed from p+A data NA50 Collaboration: J/Y suppression in Pb+Pb J/Y ‚normal‘ absorption by nucleons (Glauber model) || Experimental finding: extra suppression in A+A collisions; increasing with centrality Scenarios for charmonium suppression in A+A • QGP color screening •Comover absorption [Matsui and Satz ’86] [Gavin & Vogt, Capella et al.`97]: but (!) Lattice QCD predicts (2004): J/Y can exist up to ~2 TC ! + Regeneration of J/Y in QGP at TC: charmonium absorption by low energy inelastic scattering with ‚comoving‘ mesons (m=p,,r,...: [Braun-Munzinger, Thews, Ko et al. `01] J/Y+g <-> c+cbar+g J/Y+m <-> D+Dbar Y‘+m <-> D+Dbar cC+m <-> D+Dbar Meson absorption cross section – strongly model dependent sabsmesons ~1-10 mb Existing exp. data at SPS (by NA50 Collaboration) are also consistent with comover absorption models ! J/Y suppression in S+U and Pb+Pb at SPS Bs(J/Y)/s(DY)|2.9-4.5 50 Models: Comover model in the transport approach – HSD/UrQMD • S+U, 200 A GeV 40 NA38 30 • 20 HSD co-mover model suppression in QGP 10 0 0 Bs(J/Y)/s(DY)|2.9-4.5 50 20 40 NA50 (2000): anal. A anal. B anal. C 40 60 80 100 Pb+Pb, 160 A GeV HSD co-mover model suppression in QGP SCM 30 20 Comover model in the Glauber approach: (1) without transition to QGP: Charmonia suppression increases gradually with energy density [Capella et al.] (2) with transition to QGP: Charmonia suppression sets in abruptly at threshold energy densities, where cC is melting, J/Y is melting [Blaizot et al.] • 10 0 0 20 40 60 80 ET [GeV] 100 120 Statistical coalescence model (SCM) [Kostyuk et al.] 140 PRC 69 (2004) 054903 Y‘ suppression in S+U and Pb+Pb at SPS 0.020 Matrix element for Y‘ + mesons <-> D+Dbar B(Y')sY'/B(J/Y)sJ/Y S+U, 200 A GeV 0.015 HSD, set 1 HSD, set 2 Set 1: |MJ/Y|2=|McC|2=|MY‘|2=|M0|2 0.010 Set 2: |MJ/Y|2=|McC|2=|M0|2 0.005 co-mover model suppression in QGP |MY‘|2= 1.5 |M0|2 0.000 0 20 40 60 80 100 0.020 B(Y')sY'/B(J/Y)sJ/Y Pb+Pb, 160 A GeV 0.015 co-mover model suppression in QGP SCM HSD, set 1 HSD, set 2 0.010 0.005 0.000 0 PRC 69 (2004) 054903 20 40 60 80 100 ET [GeV] 120 140 160 0.20 x10 -5 1/2 Au+Au, s =200 GeV, midrapidity PHENIX: Au+Au; HSD co-mover model suppression in QGP SCM 0.15 0.10 pp 10 -1 Time dependence of the rate of J/Y absorption by mesons and recreation by D+Dbar annihilation: 1/2 Au+Au, s =200 GeV, central 10 J/Y+m->D+Dbar D+Dbar->J/Y+m -2 dN/dt B(J/Y) dN/dy (y=0) per binary collision J/Y suppression in Au+Au at RHIC 0.05 10 -3 10 -4 0.00 0 50 100 150 200 250 300 Number of participants 350 400 NDD~16 5 10 15 time [fm/c] At RHIC the recreation of J/Y by D+Dbar annihilation is important ! New data with higher statistics are needed to clarify the nature of J/Y suppression! 20 Y‘ suppression in Au+Au at RHIC Y‘ is strongly suppressed in 0.018 1/2 Au+Au, s =200 GeV, midrapidity B(Y')sY'/B(J/Y)sJ/Y 0.016 co-mover model suppression in QGP SCM HSD, set 1 HSD, set 2 HSD, set 1, all y 0.014 0.012 0.010 0.008 0.006 0.004 0.002 0.000 0 50 100 150 200 250 300 Number of participants 350 HSD at midrapidity recreation by D+Dbar annihilation doesn‘t compensate the absorption by mesons ! • Charm chemical equilibration is not fully achieved in transport calculations on the basis of hadronic interactions since the Y‘ to J/Y ratio still depends on the matrix element for Y‘ coupling to mesons 400 • This allows to distinguish the different scenarios of charmonia suppression ! PRC 69 (2004) 054903 HSD: v1 of D+Dbar and J/Y from Au+Au versus pT and y at RHIC 0.04 1/2 Au+Au, s =200 GeV b= 7 fm 0.00 -0.02 -2 -1 0.02 0 1 2 -5 -4 -3 -2 -1 0 1 2 3 4 5 1/2 Au+Au, s =200 GeV b=7 fm, 0<y<1 D-mesons and J/Y follow roughly the charged particle flow around midrapidity ! 0.00 -0.02 D+Dbar J/Y -0.04 0.0 STAR (10-70%) PHOBOS (6-55%) UrQMD 1.3 (10-70%) HSD 2.0 (10-70%) -0.04 y 0.04 0.00 -0.02 D+Dbar J/Y -0.04 v1 (pT) 1/2 Au+Au->h +X, s =200 GeV semi-central 0.02 v1 () v1 (y) 0.02 + 0.04 0.5 1.0 1.5 2.0 2.5 3.0 3.5 pT [GeV/c] nucl-th/0409047; PRC (2005) HSD: v2 of D+Dbar and J/Y from Au+Au versus pT and y at RHIC 1/2 Au+Au, s =200 GeV b=7 fm 0.06 1/2 0.06 Au+Au, s =200 GeV charge particles 0.05 v2() v2 (y) 0.04 0.02 0.04 0.03 0.02 0.00 -0.02 -2 -1 0 PHOBOS HSD 0.01 D+Dbar J/Y 0.00 1 -6 2 y -4 -2 0 2 4 6 Collective flow from hadronic interactions is too low at midrapidity ! 1/2 Au+Au, s =200 GeV b=7 fm, 0<y<1 0.20 v2 (pT) 0.15 • HSD: D-mesons and J/Y follow the charged particle flow > small v2 < 3% PHENIX STAR • STAR data show very large collective flow of D-mesons v2~15%! 0.10 0.05 0.00 -0.05 -0.10 0.0 => strong initial flow of non-hadronic nature! D+Dbar J/Y 0.5 1.0 1.5 2.0 pT [GeV/c] 2.5 3.0 3.5 nucl-th/0409047; PRC (2005) AMPT model: v2 of D+Dbar from Au+Au versus pT at RHIC • AMPT multi-phase transport model: (B. Zhang, L.-W. Chen and C.-M. Ko) Minijet partons from hard proceses (ZPC- Zang‘s parton cascade) + strings from soft processes (HIJING) •Parton (q, qbar) scattering cross sections (3-10 mb) „To describe the large electron elliptic flow observed in available experimental data requires a charm quark scattering cross section that is much larger than given by perturbative QCD“ [nucl-th/0502056] QGP is NOT an ideal gas as described by pQCD! Summary I •Collective flow signals of QGP v2 v1 0.1 0.0 0.0 -0.1 -0.1 central -0.2 -2 -1 0 1 0.2 0.1 NA49 HSD UrQMD -0.05 semi-central -1 0 1 2 -0.10 -2 0.2 0.10 0.1 0.05 2 NA49 HSD UrQMD semi-central 0 1 2 v2 -1 0.00 -0.1 -0.05 peripheral pT < 2 GeV/c -1 0 1 y • RHIC: v2 of charged hadrons at high pT (STAR) 2 -0.10 -2 peripheral pT < 2 GeV/c -1 0.3 0 y 1 STAR HSD, pT>2 GeV/c 0.2 <v2> STAR data on v2 of high pT charged hadrons are NOT reproduced in the hadron-string picture 1 0.00 -0.1 -0.2 -2 0 0.05 0.0 -0.2 -2 central -1 0.10 0.0 => evidence for a huge plasma pressure ?! -0.2 -2 2 v1 signature for a first order phase transition ?! Pb+Pb, 40 A GeV protons 0.2 v2 small wiggle in v1 and breakdown of v2 at midrapidity are not described by HSD and UrQMD Pb+Pb, 40 A GeV protons 0.1 v1 •SPS: proton flow (NA49) 0.2 huge plasma pressure! 0.1 0.0 0 100 200 N part 300 2 Summary II • Strangeness signals of QGP: + 0.35 + 0.20 ‚step‘ in slope T 0.15 0.10 0.05 E866 NA49 BRAHMS, 5% HSD UrQMD 0.25 0.20 0.15 E866 NA44 BRAHMS 0.10 0.00 10 0 10 1 2 10 10 Elab/A [GeV] 3 10 HSD HSD with Cronin eff. UrQMD 0.30 T [GeV] ‚horn‘ in K+/p+ + <K >/<p > 0.25 Au+Au / Pb+Pb -> K +X 4 1 10 s 1/2 NA49 STAR PHENIX 100 [GeV] Exp. data are not reproduced in terms of hadron-string picture => evidence for nonhadronic degrees of freedom • Charm signals of QGP: 1/2 Au+Au, s =200 GeV b=7 fm, 0<y<1 0.20 v2 (pT) 0.15 STAR experiment at RHIC observed very strong collective flow v2 of charm D-mesons PHENIX STAR 0.10 => evidence for strong nonhadronic interactions in the very early phase of the reaction 0.05 0.00 -0.05 D+Dbar J/Y -0.10 0.0 0.5 1.0 1.5 2.0 pT [GeV/c] 2.5 3.0 3.5 Outlook The Quark-Gluon-Plasma is there! But what are the properties of this phase ?! Initial idea (1970 – 2003): QGP is a weakly interacting gas of colored but almost massless quarks and gluons nonperturbative colored parton gas 1000 colored parton liquid T [MeV] State of the art 2005: QGP is a strongly interacting and almost ideal „color liquid“ ! New phase diagram of QCD 100 endpoint [Fodor, Katz '04] UrQMD: Au+Au, 11 A GeV Pb+Pb, 40 A GeV Pb+Pb, 160 A GeV Au+Au, 21300 A GeV chemical freezout [Cleymans et al.] 10 0 A. Peshier, W. Cassing, PRL (2005) 200 400 600 B [MeV] 800 1000 Thanks to my coauthors Steffen Bass Marcus Bleicher Wolfgang Cassing Andrej Kostyuk Marco van Leeuwen Manuel Reiter Sven Soff Horst Stöcker Henning Weber Nu Xu HSD, UrQMD - open codes: http://www.th.physik.uni-frankfurt.de/~brat/hsd.html http://www.th.physik.uni-frankfurt.de/~urqmd.html