Ramon Chips RadSafe and J2K

Download Report

Transcript Ramon Chips RadSafe and J2K

Ramon Chips
Ramon Chips is named in
memory of Col. Ilan Ramon,
Israeli astronaut who died
on board the Columbia
space shuttle, 1/2/2003
Development process of RHBD cell
libraries for advanced SOCs
Tuvia Liran [[email protected] ]
Ran Ginosar [[email protected] ]
Dov Alon [[email protected] ]
Ramon-Chips Ltd., Israel
Ramon Chips
About Ramon Chips
•
•
•
•
•
Private company
Based in Haifa; Israel
Incorporated in 2004
Developed the RadSafeTM technology
Accomplished and delivered several space grade
components to customers
• Focused on advanced IC design for space
Ramon Chips
2
Latest SOC products
JPIC JPEG2000 encoder
Ramon Chips
GR712RC Dual core LEON3FT processor
3
Outline
•
•
•
•
•
Concepts of RadSafeTM technology
RadSafeTM libraries
Design considerations
Development vehicles used
RadSafeTM 0.13µ technology
Ramon Chips
4
RadSafeTM concepts
•
•
•
•
Radiation Hardening is achieved only by design
Same technology for all space applications
Based on standard CMOS technology
Radiation hardening guaranteed by similarity to
previously qualified products/test chips
• All IPs fully developed and owned by Ramon Chips
• Proven immunity on Tower Semi 0.18µ technology
• Complementary methodologies:





Design For Reliability
Flow for SEU/SET mitigation
Design for testability
Electrical screening
Class S screening flow
Ramon Chips
5
Radiation & Reliability effects
mitigated by RadSafeTM
• Radiation effects:





TID
SEL
SEU/SET in flip-flops
SEU in SRAMs
SEFI caused by PLL/DLLs
• Reliability effects:




Electro-migration
Thermal cycling
Chemical effects
Mechanical (shock & vibration)
Ramon Chips
6
Mitigating TID effects
• Advanced CMOS process – ≤0.18µ with STI
• Fixed geometry of transistors – fixed geometry
of parasitic devices; insensitive to placement
• ~30% area penalty – much less than ELT
• TID immunity - >300Krad(Si)
OUT
INA
INB
Ramon Chips
7
Performance under TID stress
0.14
0.12
0.1
Vgs=1.2 before irrad.
Vgs=1.6 before irrad.
Vgs=2 before irrad.
Vgs=0 TID=5
Vgs=0.4 TID=5
0.1000000
Vgs=0.8
TID=5
Vgs=1.2 TID=5
Vgs=1.6 TID=5
Vgs=2 TID=5
Vgs=0 TID=10
Vgs=0.4 TID=10
Vgs=0.8 TID=10
Vgs=1.2 TID=10
Vgs=1.6 TID=10
Vgs=2 TID=10
0.06
Vgs=0.8 TID=15
Vgs=1.2 TID=15
Vgs=1.6 TID=15
Vgs=2 TID=15
Vgs=0 TID=20
Vgs=0.4 TID=20
Vgs=0.8 TID=20
Vgs=1.2 TID=20
Vgs=1.6 TID=20
Vgs=2 TID=20
Vgs=0 TID=50
Vgs=0.4 TID=50
Vgs=0.8 TID=50
Vgs=1.2 TID=50
Vgs=1.6 TID=50
Vgs=2 TID=50
Vgs=0 TID=100
Vgs=0.4 TID=100
Vgs=0.8 TID=100
Vgs=1.2 TID=100
Vgs=1.6 TID=100
Vgs=2 TID=100
Vgs=0 TID=175
Vgs=0.4 TID=175
Vgs=0.8 TID=175
Vgs=1.2 TID=175
Vgs=1.6 TID=175
Vgs=2 TID=175
Vgs=0 TID=250
Vgs=0.4 TID=250
Vgs=0.8 TID=250
Vgs=1.2 TID=250
Vgs=1.6 TID=250
Vgs=2 TID=250
Vgs=0 TID=ann
Vgs=0.4 TID=ann
0.0001000
0.04
0.02
0.0000100
0
Vgs=0.8
TID=ann
0.0000010
Vgs=1.6 TID=ann
-0.02
Vgs=0 TID=ageing
0
0.25
0.5
0.75
1
1.25
1.5
1.07
Vds(V)
2
Vgs=1.2 TID=ageing
Vgs=2 TID=ageing
0.08
Id(A)
Id(A)
PMOS
Vgs=-2 before irrad.
Vgs=-1.6 before irrad.
Vgs=-1.2 before irrad.
Vgs=-0.8 before irrad.
Vgs=-0.4 before irrad.
Vgs=0 before irrad.
Vgs=-2 TID=5
Vgs=-1.6 TID=5
0.1000000
Vgs=-1.2 TID=5
0.06
m
0.04
0.02
0
0
-0.3
-0.6
-0.9
-1.2
Vds(V)
-1.5
-1.8
TID=10
TID=15
TID=20
TID=50
TID=100
TID=175
TID=250
TID=ann
TID=ageing
0.8
1
1.4
1.6
1.8
2
Vgs(V)
Vgs=0 TID=5
Vgs=-2 TID=10
Vgs=-1.6 TID=10
Vgs=-1.2 TID=10
Vgs=-0.8 TID=10
Vgs=-0.4 TID=10
Vgs=0 TID=10
Vgs=-2 TID=15
Vgs=-1.6 TID=15
0.0100000
Vgs=-1.2 TID=15
Vgs=-0.8 TID=15
Vgs=-0.4 TID=15
Vgs=0 TID=15
Vgs=-2 TID=20
Vgs=-1.6 TID=20
Vgs=-1.2 TID=20
Vgs=-0.8 TID=20
Vgs=-0.4 TID=20
Vgs=0 TID=20
Vgs=-2 TID=50
Vgs=-1.6 TID=50
Vgs=-1.2 TID=50
0.0010000
Vgs=-0.8 TID=50
Vgs=-0.4 TID=50
Vgs=0 TID=50
Vgs=-2 TID=100
Vgs=-1.6 TID=100
Vgs=-1.2 TID=100
Vgs=-0.8 TID=100
Vgs=-0.4 TID=100
Vgs=0 TID=100
Vgs=-2 TID=175
Vgs=-1.6 TID=175
Vgs=-1.2 TID=175
0.0001000
Vgs=-0.8 TID=175
Vgs=-0.4 TID=175
Vgs=0 TID=175
Vgs=-2 TID=250
Vgs=-1.6 TID=250
Vgs=-1.2 TID=250
Vgs=-0.8 TID=250
Vgs=-0.4 TID=250
Vgs=0 TID=250
Vgs=-2 TID=ann
Vgs=-1.6 TID=ann
Vgs=-1.2 TID=ann
Vgs=-0.8 TID=ann
before irrad.
TID=5
TID=10
TID=15
TID=20
TID=50
TID=100
TID=175
TID=250
TID=ann
TID=ageing
Vgs=0 TID=ann
TID=ageing
-0.25 Vgs=-1.6
-0.5
-0.75
Vgs=-1.2 TID=ageing
Vgs=-0.8 TID=ageing
Vgs=-0.4 TID=ageing
Vgs=0 TID=ageing
-1
-1.25
-1.5
-1.07
-2
Vgs(V)
TID stress up to 250Krad(Si)
Ramon Chips
1.2
Vgs=-0.8 TID=5
Vgs=-0.4 TID=5
0.0000100
Vgs=-0.4 TID=ann
Vgs=-2 TID=ageing
0
-0.02
Vgs=2 TID=ann
0.2
0.4
0.6
Vgs=0.4 TID=ageing
Vgs=1.6 TID=ageing
0.1
TID=5
Vgs=1.2 TID=ann
0
Vgs=0.8 TID=ageing
0.12
before irrad.
Vgs=0.4 TID=15
0.0010000
Id(A)
Id(A)
Vgs=0.4 before irrad.
Vgs=0.8 before irrad.
0.0100000
Vgs=0
TID=15
0.08
NMOS
Vgs=0 before irrad.
8
TID effect on ring oscillator frequency
TID(krad)
0
Before Irrad.
13.4
50
100
150
200
250
300
Ageing
350
Annealing
13.2
freq. (MHz)
13
Dev #1
Dev #2
Dev #3
Dev #4
Dev #5
12.8
12.6
12.4
12.2
12
-481 stages of inverters with FO = 4
- Maximum variation in frequency is <0.5%
Ramon Chips
9
Mitigating SEU in flip-flops
•
•
•
•
•
•
•
Proprietary circuit
Optimized for area and power
LET threshold - ≥ 38MeV/cm2/mg
SET mitigation by glitch filtering of data
SET Filter for clock by several techniques
Restricting the use of async Set/Reset
All flip-flops on chip accessed by SCAN
Ramon Chips
10
Comparing FF alternatives
Area Power
Tvalid
LET
CLK->out
Threshold
Errors/bit/day
[@LEO](*)
MeV*cm2/mg
1
1
1
2.94
5E-7
TMR
4.01
2.6
2.5
-
-
DMR
2.48
2.2
2.5
-
-
DMR+
2.34
2.1
2.5
38.2
4E-14
SEP
1.8
1.6
1.2
38.2
4E-12
SER (**)
1.75
1.5
1.2
-
-
Unprotected
• Relative values
• Refers to standard FF, with scan, same output drive
(*) Refers to 37o inclination, quite solar
(**) Designed for 0.13u only
Ramon Chips
11
I/O cell libraries
• Two libraries:
 For 1.8V core voltage
 For 3.3V core voltage
• Special rad-hard ESD cells
• Special cells:




LVDS (>400MHz)
SSTL, HSTL, AGP
5V tolerance
Cold spare
• Proven on several chips
Ramon Chips
12
Special design rules for I/O cells
• RH mitigation:
 ≥2 guard rings
 All NMOS transistors ringed by P+/GND
 Special ESD considerations
• Other considerations for space ICs:




Large pitch/size pads – enables thick Al bond wires
Relaxed layout rules – reduced thermo-mechanical stress
Dual slope transition – reduced ringing
Double supply pads – reduced inductance & density
Ramon Chips
13
RadSafe SRAM cell
BL
Many NMOS devices
connected to bit-lines
BLB
WL
BL
BLB
WLB
Conventional SRAM cell
Only PMOS devices
connected to bit-lines
Ramon Chips
RadSafeTM SRAM cell
14
Examples of SRAM cores
Ramon Chips
15
SRAM cell libraries
• Variable sizes, up to 2Kx40
• Two types of SRAM cores:
 Single / dual port (>250MHz / >120MHz)
•
•
•
•
•
Two operation voltages: 1.8V, 3.3V
DPRAM performs read & write access per cycle
Integrated EDAC & BIST in each core
Very low power; zero standby power
Protected from all radiation effects:
 MBU is eliminated
 LET threshold 3 MeV·cm2/mg (before EDAC correction)
 In tests, all errors corrected by EDAC
• Testability features:




Complementary BIST logic
Speed control
Weak write
Iddq compatibility
Ramon Chips
16
All-digital DLL cores
•
•
•
•
•
•
•
•
Three DLL cores for 3 frequency ranges
Locking guaranteed & fast
Immediate re-locking
0.05 mm2/core
8 mW/core @0.18u
Highly protected from radiation effects
Can be placed anywhere in the core
Powered by core supply lines
Ramon Chips
17
Technology development chips
RADIC2
•1.8/3.3V transistors
•1.8/3.3V std. cells
•1.8/3.3V ring oscillators
•1.8/3.3V shift registers
•4Kbit SRAM
•ADDLL
•FPGA converted chip
RADIC3
•1.8V transistors
•1.8V std. cells
•1.8V ring oscillators
•1.8V shift registers
•Several FF types
•256Kbit DPRAM
•ADDLL
•LVDS I/O buffers
Ramon Chips
GR702RC
•LEON3FT core by GR
•Fully automatic flow
•2 SpW ports w LVDS
•2 ADDLL
•10 SRAM cores
18
RadSafe™ 0.13µ technology
• Density:
 Logic - >120Kgates/mm2
 SRAMs - >200Kbit/mm2
(40K at 0.18m)
(80K at 0.18m)
• Power - <40% of 0.18µ
• Speed - >200MHz [for large chips]
• Special IPs:
 10 bit, 1Msps, 1mW SAR ADC
• Status:
 Test chip ready for production
Ramon Chips
19
RADIC4 – Test chip for RadSafe_013
technology
3 shift
registers
3 delay lines/
SET monitor
10b RH ADC
(1Msps,1mW)
4Kx72 RH
SRAM
Ramon Chips
NMOS/PMOS
Xtors
4Kx72 RH
SRAM
With process
enhancement
20
10b Analog to Digital Converter
•
•
•
•
•
•
•
Resolution: 10 bit
Sampling rate: 0.5Msps
Power: <1.5mW
Area: ~0.03mm2
TID: >300Krad (target)
Process: 0.13µ
Voltage: 3.3/1.2V
Ramon Chips
21
Summary
• RadSafe™ by Ramon Chips
Using standard process
Using standard EDA tools & flow
Proven Rad-Hard-by-design on several chips
Optimized for performance, power & reliability
RH considerations applies to all levels of design
flow
 0.13µ process provides significant performance
advantages





Ramon Chips
22