Transcript 投影片 1
Titrations Volumetric analysis Procedures in which we measure the volume of reagent needed to react with an analyte Titration Increments of reagent solution (titrant) are added to analyte until reaction is complete. - Usually using a buret Calculate quantity of analyte from the amount of titrant added. Requires large equilibrium constant (Thermodynamic) Requires rapid reaction (kinetic) aA + tT → products A: analyte T: titrant 13920131 http:\\asadipour.kmu.ac.ir 41 slides 1 Titrations Buret Evolution Gay-Lussac (1824) Blow out liquid Mohr (1855) Compression clip Used for 100 years Descroizilles (1806) Pour out liquid 13920131 Henry (1846) Copper stopcock http:\\asadipour.kmu.ac.ir 41 slides Mohr (1855) Glass stopcock 2 Type of Titrations based on Measuring Techniques i) Volumetric titrimetry: Measuring the volume of a solution of a known concentration (e.g., mol/L) that is needed to react completely with the analyte. ii) Gravimetric (weight) titrimetry: Measuring the mass of a solution of a known concentration (e.g., mol/kg) that is needed to react completely with the analyte. iii) Coulometric titrimetry: Measuring total charge (current x time) to complete the redox reaction, then estimating analyte concentration by the moles of electron transferred. 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 3/42 Type of Titrations based on Chemical Reactions i) Acid-Base Titrations, example: H+ + OH– → H2O ii) Precipitation Titrations, example: Ag+(aq) + Cl–(aq) → AgCl(s) ii) Redox Titrations: 5 H2O2 + 2 MnO4– + H+ → 5 O2 + 2 Mn2+ + 8H2O iv) Complexometric Titrations, example: EDTA + Ca2+ → (Ca–EDTA)2+ 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 4/42 Type of Titration Curves Type Example. y-axis x-axis Acid-base HCl/NaOH pH V. NaOH Precipitation Ag+/Cl– pAg+ V. Ag+ Complexation Ca2+/EDTA pCa2+ V. EDTA Redox MnO4–/Fe2+ Potential V. Fe2+ V. = volume 13920131 Type Example Spectrophotometric apotransferrin/ Absorbance Fe3+ Thermometric H3BO4/ NaOH http:\\asadipour.kmu.ac.ir 41 slides y-axis x-axis V. Fe3+ Temperature V. NaOH TMHsiung@2007 5/42 Expressing concentration Formality Molarity (V & W) Molality Normality %W/W %W/V %V/V part per thousand (ppt) - X's 1000 parts per million (ppm) - X's 106 parts per billion (ppb) - X's 109 13920131 http:\\asadipour.kmu.ac.ir 41 slides 6 relationship between titrant and analyte # Eqg titrant = # Eqg analyte (V*N)titrant =(V*N)analyte # Eqg titrant = (V*N)titrant #molestitrant=(V*M)titrant #molesanalyte=(V*M)analyte 13920131 http:\\asadipour.kmu.ac.ir 41 slides 7 Standardization: The process by which the concentration of a reagent is determined by reaction with a known quantity of a second reagent Primary standard: The reagent which is ready to be weighted and used prepare a solution with known concentration (standard). Requirements of primary reagent are: - Known stoichiometric composition and reaction - High purity - Nonhygroscopic - Chemically stable both in solid and solution - High MW or FW Secondary standard: A standard solution which is standardized against a primary standard. 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 8/42 Standardization Required when a non-primary titrant is used - Prepare titrant with approximately the desired concentration Use it to titrate a primary standard Determine the concentration of the titrant Titration Standardization titrant known concentration titrant unknown concentration analyte unknown concentration 13920131 analyte known concentration http:\\asadipour.kmu.ac.ir 41 slides 9 Standardization of 0.1 M NaOH 1-selection the PS (e.g. KHP) mg m l N 2-wheing the PS EqW 10*0.1=mg/204.1 213.8 N1V1=N2V2 3-making solution 4-addind suitable indicator 5-titration 9.1ml 6-calculation 9.1*n=213.8/204.1 n=0.115 13920131 http:\\asadipour.kmu.ac.ir 41 slides 10 Blank Titration: Titration procedure is carried out without analyte (e.g., a distilled water sample). It is used to correct titration error. Back titration: A titration in which a (known) excess reagent is added to a solution to react with the analyte. The excess reagent remaining after its reaction with the analyte, is determined by a titration. 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 11/42 Standardization Example: To standardizing a KMnO4 stock solution, the primary standard of 9.1129 g Na2C2O4 is dissolved in 250.0 mL volumetric flask. 10.00 mL of the Na2C2O4 solution require 48.36 mL of KMnO4 to reach the titration end point. What is the molarity (M) of MnO4– stock solution? (FW Na2C2O4 134.0) Solution: 2– 5C2O4 (aq) + 2MnO4–(aq) + 16H+(aq) → 10CO2(g) + Mn2+(aq) + 8H2O(l) 9.1129 g Na 2C2O 4 1 mol Na 2C2O 4 1 mol C2O 24 10 mL 1 134.0 g Na 2C2O 4 1 mol Na 2C2O 4 250 mL 2 mol MnO4 1 1000 mL 0 . 02250 M MnO 4 1L 5 mol C2O 24 48.36 mL 13920131 http:\\asadipour.kmu.ac.ir 41 slides Ans TMHsiung@2007 12/42 Unknown Analysis with a Blank Correction Example: A 0.2865 g sample of an iron ore is dissolved in acid, and the iron is converted entirely to Fe2+. To titrate the resulting solution, 0.02653 L of 0.02250 M KMnO4 is required. Also a blank titration require 0.00008 L of KMnO4 solution. What is the % Fe (w/w) in the ore? (AW Fe 55.847) MnO4–(aq) + 5Fe2+ + 8H+(aq) → Mn2+(aq) + 5Fe3+ + 4H2O(l) Net titrant vol 0.02653 0.00008 L 0.02645 L 0.02645 L titrant 0.02250 mol MnO4 5 mol Fe 2 1 1 L titrant 1 mol MnO4 55.847 g Fe 1 100% 58.01% Fe ( w / w) 2 0.2865 g sample 1 mol Fe 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 13/42 Back Titration 1)Add excess of one standard reagent (known concentration) 2)Titrate excess standard reagent to determine how much is left - Add Fe2+ to determine the amount of MnO4- that did not react with oxalic acid Differences is related to amount of analyte Useful if better/easier to detect endpoint MnO4–(aq) + 5Fe2+ + 8H+(aq) → Mn2+(aq) + 5Fe3+ + 4H2O(l) 13920131 http:\\asadipour.kmu.ac.ir 41 slides 14 Back Titration Example: The arsenic in 1.010 g sample was pretreated to H3AsO4(aq) by suitable treatment. The 40.00 mL of 0.06222 M AgNO3 was added to the sample solution forming Ag3AsO4(s): H3 AsO4( aq ) 3Ag ( aq) 3H ( aq) Ag3 AsO4( s ) The excess Ag+ was titrated with 10.76 mL of 0.1000 M KSCN. The reaction was: Ag (aq ) SCN (aq ) AgSCN( s ) Calculate the percent (w/w) As2O3(s) (fw 197.84 g/mol) in the sample. 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 15/42 0.06222m m ol AgNO3 (40.00 m L AgNO3 1 m L AgNO3 0 . 1000 m m ol SCN 1 m m ol Ag 10.76 m L SCN ) m L SCN 1 m m olSCN 1 m m olH 3 AsO4 1 m m olAs 3 m m olAg 1 m m olH 3 AsO4 1 m m olAs2O3 1 m ol As2O3 197.84 g As2O3 2 m m olAs 1000m m olAs2O3 1 m ol As2O3 1 100% 4.612% As2O3 (w/w) 1.010 g sam ple 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 16/42 Back Titration In a back titration analysis of HCO3-, 25 mL of a bicarbonate solution is reacted with 25.00 mL of 0.100 M NaOH. The excess NaOH was titrated with 0.100 M HCl. This required 14.82 mL. What is the concentration of bicarbonate in solution? → Na + CO NaOH + HCl → NaCl + H O NaOH + HCO3- + 3 - + H2O 2 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 17/42 Equivalence point Quantity of added titrant is the exact amount necessary for stoichiometric reaction with the analyte Ideal theoretical result Analyte Oxalic acid (colorless) Titrant (purple) (colorless) (colorless) Equivalence point occurs when 2 moles of MnO4- is added to 5 moles of Oxalic acid 13920131 http:\\asadipour.kmu.ac.ir 41 slides 18 End point Occurs from the addition of a slight excess of titrant Marked by a sudden change in the physical property of the solution - - Change in color, pH, voltage, current, absorbance of light. - Analyte Oxalic acid (colorless) End point ≈ equivalence point Titrant (purple) (colorless) (colorless) After equivalence point occurs, excess MnO4- turns solution purple Endpoint 13920131 http:\\asadipour.kmu.ac.ir 41 slides 19 Titration Error - Difference between endpoint and equivalence point Corrected by a blank titration 1) repeat procedure without analyte 2) Determine amount of titrant needed to observe change 3) subtract blank volume from titration 13920131 http:\\asadipour.kmu.ac.ir 41 slides 20 Calculation of ascorbic acid in Vitamin C tablet: Standardization: Suppose 29.41 mL of I3- solution is required to react with 0.1970 g of pure ascorbic acid, what is the molarity of the I3- solution? Analysis of Unknown: A vitamin C tablet containing ascorbic acid plus an inert binder was ground to a powder, and 0.4242g was titrated by 31.63 mL of I3-. Find the weight percent of ascorbic acid in the tablet. (i) Starch is used as an indicator: (ii) starch + I3- starch-I3- complex ascorbic acid was oxidized with I3-: 13920131 1 mole ascorbic acid 1 mole I3- http:\\asadipour.kmu.ac.ir 41 slides 21 Titration of a Mixture Example: A solid mixture weighing 1.372 g containing only sodium carbonate (Na2CO3, FW 105.99) and sodium bicarbonate (NaHCO3, FW 84.01) require 29.11 mL of 0.7344 M HCl for complete titration: Na2CO3 2 HCl 2 NaCl( aq ) H 2O CO2 NaHCO3 HCl NaCl( aq ) H 2O CO2 Find the mass of each component of the mixture. Total mixture Na2CO3 NaHCO3 13920131 mass 1.372 moles x x/105.99 g/mol 1.372 - x 1.372 – x/84.01 g/mol http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 22/42 Total mmol H added 1L 0.7344 mol H 29.11 mL HCl 0.02138 mol H 1 000 mL 1 L HCl mmol H consumed by Na2CO3 1 mol Na2CO3 2 mol H 2x x g Na2CO3 mol H 105.99 g Na2CO3 1 mol Na2CO3 105.99 mmol H consumed by NaHCO3 1 mol NaHCO3 1 mol H 1.372 x (1.372 x) g NaHCO3 84.01 g NaHCO3 1 mol NaHCO3 84.01 2 x 1.372 x 0.02138 105.99 84.01 x g Na2CO3 0.724 g Na2CO3 Ans (1.372 x) g NaHCO3 0.648 g NaHCO3 13920131 http:\\asadipour.kmu.ac.ir mol H Ans 41 slides TMHsiung@2007 23/42 Direct and back (indirect) titration of Aspirin 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 24/42 Precipitation Titrations A titration in which the reaction between the analyte and titrant involves a precipitation. Ag+(aq) + Cl–(aq) AgCl(s) AgCl(s) Ag+(aq) + Cl–(aq) s = [Ag+]=[Cl–] Ksp = 1.8×10–10 [Ag+]=[Cl–]=1.35x10–5 pAg = 4.89 pCl = 4.89 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 25/42 Titration curve of 50.0 mL of 0.0500 M Cl– with 0.100 M Ag+ pCl pAg 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 26/42 Example: For the titration of 50.0 mL of 0.0500 M Cl– with 0.100 M Ag+. The reaction is: Ag+(aq) + Cl–(aq) AgCl(s) K = 1/Ksp = 1/(1.8×10–10) = 5.6 x 109 Find pAg and pCl of Ag+ solution added (a) 0 mL (b) 10.0 mL (c) 25.0 mL (d) 35.0 mL Solution: (a) 0 mL Ag+ added (At beginning) [Ag+] = 0, pAg can not be calculated. [Cl–] = 0.0500, pCl = 1.30 N1V 1 N 2V 2 ] In eq point, 25 ml N1V1=N2V2[Cl 50*0.05=0.1*V2 V1 V 2 (b) 10 mL Ag+ added (Before Ve) N 2V 2 N1V 1 [ Ag ] K sp V2 [ Ag ] V 1 -5 √Ksp=[Ag+]=[Cl-]=1.34*10 (d) 35 mL Ag+ added (After Ve) [Cl ] 13920131 http:\\asadipour.kmu.ac.ir 41 slides [Cl ] K sp [ Ag ] TMHsiung@2007 27/42 Diluting effect of the titration curves 25.00 mL 0.1000 M I– titrated with 0.05000 M Ag+ 25.00 mL 0.01000 M I– titrated with 0.005000 M Ag+ 25.00 mL 0.001000 M I– titrated with 0.0005000 M Ag+ 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 28/42 Ksp effect of the titration curves 25.00 mL 0.1000 M halide (X–) titrated with 0.05000 M Ag+ 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 29/42 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 30/42 Titration of a mixture (uncertainty concerned) (a) 40.00 mL of 0.0502 M KI + 0.0500 M KCl, titrated with 0.0845 M Ag+ (b) 20.00 mL of 0.1004 M KI titrated with 0.0845 M Ag+ 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 31/42 Example: A 25.00 mL solution containing Br– and Cl– was titrated with 0.03333 M AgNO3. Ksp(AgBr)=5x10–13, Ksp(AgCl)=1.8x10–10. (a) Which analyte is precipitated first? (b) The first end point was observed at 15.55 mL. Find the concentration of the first that precipitated (Br– or Cl–?). (c) The second end point was observed at 42.23 mL. Find the concentration of the second that precipitated (Br– or Cl–?). Solution: b (a) Ag+(aq) + Br–(aq) cAgBr N1V(s)1 N 2VK2= 1/Ksp(AgBr) = 2x1012 Ag+(aq) + Cl–(aq) AgCl(s) K = 1/Ksp(AgCl) = 5.6x109 N1 (V.55 2 V0 1).3333 N 2V325 N 2 15 Ans: AgBr precipitated first 0.3333 (42 15.M 55) 25 N 2 N2 0..23 02073 N 2 0.03557M 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 32/42 2) Argentometric Titration Define Argentometric Titration: A precipitation titration in which Ag+ is the titrant. – – – 13920131 Argentometric Titration classified by types of End-point detection: Volhard method: A colored complex (back titration) Fajans method: An adsorbed/colored indicator Mohr method: A colored precipitate http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 33/42 Mohr method The Mohr method was first published in 1855 as a method for chloride analysis. In the precipitation of chloride by silver ion, chromate ion (CrO42) is used as an indicator in the formation of Ag2CrO4, a reddish-brown precipitate formed when excess Ag+ is present. CrO42 + Ag + Cl AgCl(s) Ksp= 1.8 x 10-10 (S = 1.34 x 10-5 M) white precipitate 2Ag+ + CrO42 Ag2CrO4(s) Ksp= 1.2 x 10-12 (s = 6.7 x 10-5M) red precipitate 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 34/42 The titrations are performed only in neutral or slightly basic medium to prevent silver hydroxide formation (at pH > 10). 2Ag+ + 2OH 2AgOH(s) Ag2O(s) + H2O precipitate to prevent chromic acid formation (at pH < 7). CrO42 + H3O+ HCrO4 + H2O 2 CrO42 + 2 H3O+ H2CrO4 + H2O 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 35/42 Volhard METHOD Back titration for determination of Cl-.. First published in 1874. Reactions: Ag+ + (excess) Cl AgCl(s) Ksp = 1.82 x 10-10 white precipitate H+, Fe3+ SCN + Ag+ titrant Ksp = 1.1 x 10-12 white precipitate SCN + Fe3+ Indicator 13920131 AgSCN(s) FeSCN2+ Kf = 1.4 x 10+2 red complex http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 36/42 The titration is usually done in acidic pH medium to prevent precipitation of iron hydroxides, Fe(OH)3. Fe3+ +3(OH)- ⇄ Fe(OH)3 Ksp=1*10-39 If 13920131 [Fe3+]=0.001 M pH=????? http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 37/42 Since SAgSCN <SAgCl , equilibrium will shift to the right causing a negative error for the chloride analysis. Ag+ + Cl SCN + Ag+ AgCl(s) Ksp = 1.82 x 10-10 AgSCN(s) Ksp = 1.1 x 10-12 SCN- + AgCl AgSCN + Cl- To eliminate this error, AgCl must be filtered or add nitrobenzene before titrating with thiocyanate; nitrobenzene will form an oily layer on the surface of the AgCl precipitate, thus preventing its reaction with thiocyanate. 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 38/42 Fajans Method: An adsorbed/colored indicator. Titrating Cl– and adding dichlorofluoroscein as indicator: Before Ve (Cl– excess) Greenish yellow solution After Ve (Ag+ excess) 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 39/42 5) Applications of argentometric titrations: 13920131 http:\\asadipour.kmu.ac.ir 41 slides TMHsiung@2007 40/42