Ch. 8 Comparative-Static Analysis of General

Download Report

Transcript Ch. 8 Comparative-Static Analysis of General

Ch. 8 Comparative-Static Analysis of
General-Function Models
•
•
•
•
•
•
8.1
8.2
8.3
8.4
8.5
8.6
Models
•
8.7
Differentials
Total Differentials
Rules of Differentials (I-VII)
Total Derivatives
Derivatives of Implicit Functions
Comparative Statics of General-Function
Limitations of Comparative Statics
1
7.4 P artialDerivatives, p.167
1)
y  f( x1,x 2 , ,x n )
variablesx i are all independent of one another
each x can varyby itself w/o affect the othersuch that
2)
Δy Δx1  f( x1  Δx,x 2 , ,x n ) Δx1
3)
lim Δy Δx1 
Δx 0

y  f1
x1
4)
Y  C  I 0  G0
5)
6)
C  a  b( Y-T);
T  d  tY;
a-bd  I  G
Y* 
1-b  tb
7)
8)
C* 
b(1-t)( I  G)  a-bd
1-b  tb
9)
T* 
t( I  G)  ta  d(1-b)
1-b  tb
partialderivativewith operator x1
( a  0; 0  b  1 )
( d  0; 0  t  1 )
 *
1
Y 
0
Go
1  b  bt

b(1  t)
C* 
0
Go
1  b  bt
 *
t
T 
0
Go
1  b  bt
2
8.1 Differentials
8.1.1 Differentials and derivatives
8.1.2 Differentials and point elasticity
3
8.1.1 Differentials and derivatives
Problem: What if no explicit reduced-form solution exists
because of the general form of the model? Example: What
is Y / T when
Y = C(Y, T0) + I0 + G0
T0 can affect C direct and indirectly thru Y, violating the
partial derivative assumption
Solution:
• Find the derivatives directly from the original equations in
the model.
• Take the total differential
• The partial derivatives become the parameters
4
If
1)
Y  C  I 0  G0
2)
3)
C  a  b( Y-T)
Y  a  b( Y-T)  I 0  G0
4)
Y  bY  a  bT  I 0  G0
Y  a  bT  I 0  G0 1  b
parameter data
parameters and exog. vars mutuallyindependent
Then
4)
If
1)
2)
3)

Y   b 1 b
T
Y  C  I 0  G0
C  C Y , T0 
Y  C Y , T0   I 0  G0
4)
Y *  Y * T0 , I 0 , G0 
5)
Y *  C Y * , T0  I 0  G0
6)
Y*

 C Y
no parameter data
assumingequil.exists

*
T0 , I 0 , G0 , T0 
I 0  G0
exog. var (C argumentsand T0 ) mutuallydependent
Then
7)
 *
Y ?
T0

 
problem: C Y * , T0  C Y * T0 , I 0 , G0 , T0

5
8.1 Differentials
d
1)
y  f x   lim y x
derivative
x 0
dx
2)
y x  f x   
as x  0 then   0
3)
y x  f x   
4)
y  f x x  x
5)
y  f x x
as finite x  0
6)
dy  f x dx
differential
where f x  is the factor of proportionality
A first - order Taylorseriesapproximation of y1 is :
7)
f x1   f x0   f x0 x1  x0 
8)
y  f x0 x
6
Differential: dy & dx as finite changes (p. 180)
fi·nite
Mathematics.
a. Being neither infinite nor
infinitesimal.
b. Having a positive or negative
numerical value; not zero.
c. Possible to reach or exceed by
counting. Used of a number.
d. Having a limited number of
elements. Used of a set.
7
Difference Quotient, Derivative &
Differential
f(x)
y=f(x)
f(x0+x)
B
x
y
f(x0)
D
A
x0
x
f’(x)
f’(x0)x
C
x
x0+x
8
Overview of Taxonomy Equations: forms and functions
Form
Primitive
Function
Specific
(parameters)
General
(no parameters)
Explicit
(causation)
y = a+bx
y = f(x)
Implicit
(no causation)
y3+x3-2xy = 0
F(y, x) = 0
9
Overview of Taxonomy –
1st Derivatives & Total Differentials
Form
Differentiation
Function
Specific
(parameters)
Explicit
(causation)
d
y b
dx
Implicit
(no causation)
3 y
2
 
General
(no parameters)
dy  f ( x) dx
dy
 f ( x)
dx

 2 x dy  2 x 2  2 y dx  0


dy
2x 2  2 y

dx
3y 2  2x


dy  
Fx
dx
Fy
F
dy
 x
dx
Fy
10
8.1.1 Differentials and derivatives
• From partial differentiation to total differentiation
• From partial derivative to total derivative using total
differentials
• Total derivatives measure the total change in y from
the direct and indirect affects of a change in xi
11
8.1.1 Differentials and derivatives
• The symbols dy and dx are called the differentials of
y and x respectively
• A differential describes the change in y that results
for a specific and not necessarily small change in x
from any starting value of x in the domain of the
function y = f(x).
• The derivative (dy/dx) is the quotient of two
differentials (dy) and (dx)
• f '(x)dx is a first-order approximation of dy
y  f ( x)
dy  f ' ( x)dx
12
8.1.1 Differentials and derivatives
• “differentiation”
– The process of finding the differential (dy)
• (dy/dx) is the converter of (dx) into (dy) as dx 0
– The process of finding the derivative (dy/dx) or
• Differentiation with respect to x
Differential
Derivative
 dy 
dy   dx
 dx 
dy   dy 
 
dx  dx 
13
8.1.2 Differentials and point elasticity
• Let Qd = f(P)
(explicit-function general-form demand equation)
• Find the elasticity of demand with respect to price
dQd 
 dQd


dP  m arg inal function
%Qd
Qd 
d 



dP
Qd
%P
average function
P
P
elastic if  d  1, inelastic if  d  1
14
8.2 Total Differentials
• Extending the concept of differential to smooth
continuous functions w/ two or more variables
• Let y = f (x1, x2) Find total differential dy
y
y
dy 
dx1 
dx2
x1
x2
dy  f1dx1  f 2 dx2
15
8.2 Total Differentials (revisited)
• Differentiation of U wrt x1
• U/ x1 is the marginal utility of the good x1
• dx1 is the change in consumption of good x1
dU U U dx2
U dxn


 ... 
dx1 x1 x2 dx1
xn dx1
dU    U 
dx1   x1  x ...x cons tan t
2
n
16
8.2 Total Differentials (revisited)
Total Differentiation:
Let Utility function U = U (x1, x2, …, xn)
U
U
U
dU 
dx1 
dx2   
dxn
x1
x2
xn
To find total derivative
divide through by the differential dx1 ( partial total derivative)
dU U U dx2
U dxn


 ... 
dx1 x1 x2 dx1
xn dx1
17
8.2 Total Differentials
•
•
•
•
Let Utility function U = U (x1, x2, …, xn)
Differentiation of U wrt x1..n
U/ xi is the marginal utility of the good xi
dxi is the change in consumption of good xi
U
U
U
dU 
dx1 
dx2   
dxn
x1
x2
xn
• dU equals the sum of the marginal changes in the
consumption of each good and service in the
consumption function
18
8.3 Rules of differentials,
the straightforward way
Find dy given function y=f(x1,x2)
1. Find partial derivatives f1 and f2 of x1 and x2
2. Substitute f1 and f2 into the equation
dy = f1dx1 + f2dx2
19
8.3 Rules of Differentials
(same as rules of derivatives)
Let k is a constant function; u = u(x1); v = v(x2)
• 1. dk = 0
(constant-function rule)
• 2. d(cun) = cnun-1du
(power-function rule)
• 3. d(u  v) = du  dv (sum-difference rule)
• 4. d(uv) = vdu + udv (product rule)
• 5.  u  vdu  udv (quotient rule)
d  
v
v2
20
8.3 Rules of Differentials (I-VII)
6. d u  v  w  du  dv  dw
7. d(uvw) = vwdu + uwdv + uvdw
21
Rules of Derivatives & Differentials
for a Function of One Variable
d
1) c  0
dx
d n
2) x  nxn 1
dx
1' ) dc  0dx  0
2' ) dxn  nxn 1dx
d
3)  f x   g x   f x   g x 
dx
3' ) d  f x   g x   f x dx  g x dx
22
Rules of Derivatives & Differentials
for a Function of One Variable
d
4)  f x g x   f x g x   f x g x 
dx
4' ) d  f x g x   f x g x dx  f x g x dx
d
5a ) cx  c
dx
d n
5b) cx  cnxn 1
dx
5a ' ) dcx  cdx
5b' ) dcxn  cnxn 1dx
23
Rules of Derivatives & Differentials
for a Function of One Variable
d  f x  f x g x   f x g x 
6) 


2
dx  g x  
g x 
 f x  f x g x dx  f x g x dx
6' ) d 


2
g x 
 g x  
24
8.3 Example 3, p. 188:
Find the total differential (dz) of the function
1)
z
2)
z
3)
4)
x y
2x2
x

2x 2 2x 2
z
z
dz 
dx  dy
x
y
z   x
y  2 x 2  4 x 2  4 xy
 



2
2 2
x x  2 x 2 2 x 2 
2x
2x 2
 

5)
6)
y
2 x 2  4 x 2  4 xy

 
x  2x  2 y
4x4
z
  x
y    y
  2  2  2
y y  2 x
2 x  y  2 x
 x  2 y 
1
dz 
dx

dy
3
2
2x
2x
2x3
1

 2
 2x
25
8.3 Example 3 (revisited using the quotient rule for
total differentiation)

1
 x y
2
2
d

2
x
d
(
x

y
)

(
x

y
)
d
(
2
x
)

2
2
2
 2x  2x
1
 4 2 x 2 (dx  dy)  ( x  y )4 xdx
4x
1
 4 2 x 2 dx  2 x 2 dy  4 x 2 dx  4 yxdx
4x
1
 4 2 x 2 dy  2 x 2 dx  4 yxdx
4x
2x2
2 x 2  4 yx
 4 dy 
dx
4
4x
4x
1
x  2y
 2 dy 
dx
3
2x
2x
 







26
8.4 Total Derivatives
•
•
•
•
8.4.1 Finding the total derivative
8.4.2 A variation on the theme
8.4.3 Another variation on the theme
8.4.4 Some general remarks
27
8.4.1 Finding the total derivative from the
differential
8.4.1 pp.184- 5, Given
1)
y  f x1,x 2 , ,x n 
Total differential dy is equalto the sum of the partialchangesin y :
y
y
y
2)
dy 
dx1 
dx2   
dxn
x1
x2
xn
3)
dy  f1dx1  f 2 dx2  ...  f n dxn
The partialtotalderivativeof y wrt x1 , for example,
is found by dividingbothsidesby dx1
4)
dx
dx
dy
 f1  f 2 2    f n n
dx1
dx1
dx1
28
8.4.3 Another variation on the theme
8.4.3
1)
2)
y  f x1 , x2 , u, v 
x1  g u, v 
3)
x2  hu, v 
4)
dy  f x1 dx1  f x2 dx2  f u du  f v dv totaldifferential
5)
6)
dx1
dx2
dy
dv
 f x1
 f x2
 fu  fv
du
du
du
du
§y
 f x1 g u  f x2 hu  f u
partialtotalderivative
§u v c
29
8.4.3 Another variation on the theme
y  f ( x1 , x2 )
x1  5u 2  3v
x2  u  4v 3
dy  f1dx1  f 2 dx2
dx1  10udu  3dv
dx2  du  12v 2 dv


dy  f1 10udu  3dv  f 2 du  12v 2 dv
dy  f110udu  f1 3dv  f 2 du  f 212v 2 dv


dy   f110u  f 2 du  f1 3  f 212v 2 dv
§y
 f110u  f 2 ,
§ u c v
§y
 f1 3  f 212v 2
§ v c u
30
8.5 Derivatives of Implicit Functions
•
•
•
8.5.1 Implicit functions
8.5.2 Derivatives of implicit functions
8.5.3 Extension to the simultaneousequation case
31
8.5.1 Implicit functions
• Explicit function: y = f(x)  F(y, x)=0 but reverse may not
be true, a relation?
• Definition of a function: each x  unique y (p. 16)
• Transform a relation into a function by restricting the range
of y0, F(y,x)=y2+x2 -9 =0
32
8.5.1 Implicit functions
• Implicit function theorem: given F(y, x1 …, xm) = 0
a) if F has continuous partial derivatives
Fy, F1, …, Fm and Fy  0 and
b) if at point (y0, x10, …, xm0), we can construct a
neighborhood (N) of (x1 …, xm), e.g., by limiting the
range of y, y = f(x1 …, xm), i.e., each vector of x’s 
unique y
then i) y is an implicitly defined function y = f(x1 …, xm)
and ii) still satisfies F(y, x1 … xm) for every m-tuple in
the N such that F  0 (p. 195)
dfn: use  when two side of an equation are equal for any values of x and y
dfn: use = when two side of an equation are equal for certain values of x and y (p.197)
33
8.5.1 Implicit functions
• If the function F(y, x1, x2, . . ., xn) = k is an
implicit function of y = f(x1, x2, . . ., xn), then
Fy dy  Fx1 dx1  Fx2 dx2  ... Fxn d xn  0
where Fy = F/y;
Fx1 = F/x1
• Implicit function rule
• F(y, x) = 0; F(y, x1, x2 … xn) = 0, set dx2 to n = 0
34
8.5.1 Implicit functions
• Implicit function rule
Fy dy  Fx1 dx1  Fx2 dx2  ...  Fxn d xn  0
Fy dy   Fx1 dx1  Fx2 dx2  ...  Fxn d xn
Let dx 2  dxn  0 such that
Fx1
dy
y
|dx x .dxn 0 

dx1
x1
Fy
35
8.5.1 Deriving the implicit function rule (p. 197)
1) F ( y, x1 , x2 )  0
2) y  f ( x1 , x2 )
3) Fy dy  F1dx1  F2 dx2  0
4) dy  f1dx1  f 2 dx2
5) Fy  f1dx1  f 2 dx2   F1dx1  F2 dx2  0
36
8.5.1 Deriving the implicit function rule (p. 197)
6) Fy f1dx1  Fy f 2 dx2  F1dx1  F2 dx2  0
7) Fy f1  F1 dx1  Fy f 2  F2 dx2  0
8) Fy f1  F1 dx1  0
9) Fy f 2  F2 dx2  0
y
F1
10) f1 

x1
Fy
y
F2
11) f 2 
 ,
x2
Fy
37
Implicit function problem:
Exercise 8.5-5a, p. 198
• Given the equation F(y, x) = 0 shown below, is it an implicit
function y = f(x) defined around the point
(y = 3, x = 1)? (see Exercise 8.5-5a on p. 198)
• x3 – 2x2y + 3xy2 - 22 = 0
• If the function F has continuous partial derivatives Fy, F1, …,
Fm
• ∂F/∂y =-2x2+6xy
∂F/∂x =3x2-4xy+3y2
38
Implicit function problem
Exercise 8.5-5a, p. 198
• If at a point (y0, x10, …, xm0) satisfying the equation F (y, x1
…, xm) = 0, Fy is nonzero (y = 3, x = 1)
• This implicit function defines a continuous function f with
continuous partial derivatives
• If your answer is affirmative, find dy/dx by the implicitfunction rule, and evaluate it at point (y = 3, x = 1)
• ∂F/∂y =-2x2+6xy
∂F/∂x =3x2-4xy+3y2
• dy/dx = - Fx/Fy =- (3x2-4xy+3y2 )/-2x2+6xy
• dy/dx = -(3*12-4*1*3+3*32 )/(-2*12+6*1*3)=-18/16=-9/8
39
8.5.2 Derivatives of implicit functions
• Example
If F(z, x, y) = x2z2 + xy2 - z3 + 4yz = 0, then
Fy
z
2 xy  4 z

 2
2
y
Fz
2 x z  3z  4 y
40
8.5 Implicit production function
•
•
•
•
F (Q, K, L)
K/L = -(FL/FK)
Q/L = -(FL/FQ)
Q/K = -(FK/FQ)
Implicit production function
MRTS: Slope of the isoquant
MPPL
MPPK (pp. 198-99)
41
Overview of the Problem –
8.6.1 Market model
• Assume the demand and supply functions for a
commodity are general form explicit functions
Qd = D(P, Y0)
(Dp < 0; DY0 > 0)
Qs = S(P, T0)
(Sp > 0; ST0 < 0)
• where
Q is quantity, P is price, (endogenous variables)
Y0 is income, T0 is the tax (exogenous variables)
no parameters, all derivatives are continuous
• Find
P/Y0,
Q/Y0,
P/T0
Q/T0
42
Overview of the Procedure 8.6.1 Market model
• Given
Qd = D(P, Y0)
(Dp < 0; DY0 > 0)
Qs = S(P, T0)
(Sp > 0; ST0 < 0)
• Find
P/Y0,
P/T0,
Q/Y0,
Q/T0
Solution:
• Either take total differential or apply implicit function rule
• Use the partial derivatives as parameters
• Set up structural form equations as Ax = d,
• Invert A matrix or use Cramer’s rule to solve for x/d
43
8.5.3 Extension to the simultaneousequation case
• Find total differential of each implicit function
• Let all the differentials dxi = 0 except dx1
and divide each term by dx1 (note: dx1 is a choice )
• Rewrite the system of partial total derivatives of the
implicit functions in matrix notation
44
8.5.3 Extension to the simultaneous-equation case
1) F1 ( y1 , y2 , x1 )  0
2) F2 ( y1 , y2 , x2 )  0
3)
F1
F
F
dy1  1 dy2  1 dx1  0
y1
y2
x1
4)
F2
F
F
dy1  2 dy2  2 dx2  0
y1
y2
x2
5)
F1
F
F
dy1  1 dy2   1 dx1  0dx2
y1
y2
x1
6)
F2
F
dy1  2 dy2 
y1
y2
0dx1 
F2
dx2
x2
45
8.5.3 Extension to the simultaneous-equation case
• Rewrite the system of partial total derivatives of the
implicit functions in matrix notation (Ax=d)
7)
F1 dy1 F1 dy2
F

 1
y1 dx1 y2 dx1
x1
10)
F1 dy1 F1 dy2


y1 dx2 y2 dx2
8)
F2 dy1 F2 dy2


y1 dx1 y2 dx1
11)
F2 dy1 F2 dy2
F

 2
y1 dx2 y2 dx2
x2
 F1
 y
9)  1
 F2
 y
 1
0
F1   dy1 
F
y2   dx1   1 

   x1 

F2   dy2  
0





dx
y2   1 
 F1
 y
12)  1
 F2
 y
 1
0
F1   dy1 
y2   dx2   0 

   F2 
F2   dy2   x 
2 




dx
y2   2 
46
7.6 Note on Jacobian Determinants
• Use Jacobian determinants to test the existence of
functional dependence between the functions /J/
• Not limited to linear functions as /A/ (special case
of /J/
• If /J/ = 0 then the non-linear or linear functions
are dependent and a solution does not exist.
y1 x1
J 
y 2 x1
F 1
y1 x2
y1

F 2
y 2 x2
y1
F 1
y 2
2  0
F
y 2
47
8.5.3 Extension to the simultaneousequation case
• Solve the comparative statics of endogenous variables
in terms of exogenous variables using Cramer’s rule
 F

dy1 1  x1

dx1 J  F 2

 x1
1
F 

y2 
2
F

y2 
1
48
8.6 Comparative Statics of GeneralFunction Models
•
•
8.6.1 Market model
8.6.2 Simultaneous-equation
approach
•
8.6.3 Use of total derivatives
•
8.6.4 National income model
•
8.6.5 Summary of the procedure
49
Overview of the Problem –
8.6.1 Market model
• Assume the demand and supply functions for a
commodity are general form explicit functions
Qd = D(P, Y0)
(Dp < 0; DY0 > 0)
Qs = S(P, T0)
(Sp > 0; ST0 < 0)
• where
Q is quantity, P is price, (endogenous variables)
Y0 is income, T0 is the tax (exogenous variables)
no parameters, all derivatives are continuous
• Find
P/Y0,
Q/Y0,
P/T0
Q/T0
50
Overview of the Procedure 8.6.1 Market model
• Given
Qd = D(P, Y0)
(Dp < 0; DY0 > 0)
Qs = S(P, T0)
(Sp > 0; ST0 < 0)
• Find
P/Y0,
P/T0,
Q/Y0,
Q/T0
Solution:
• Either take total differential or apply implicit function rule
• Use the partial derivatives as parameters
• Set up structural form equations as Ax = d,
• Invert A matrix or use Cramer’s rule to solve for x/d
51
General Function Comparative Statics:
A Market Model (8.6.1)
Let thedemandand supply functionsfor a commoditybe :
1) Qd  DP, Y0 
2) Qs  S P, T0 
( DP/  0; DY/0  0)
( S P/  0; ST/0  0)
WhereY0 is incomeand T0 is the tax on thecommodity.
All derivativecontinuous.
Endogenous: Q, P
Exogenous:Y0 , T0
P arameters: D, S are functionsof P , Y0 , and T0
3) F 1(P, Q; Y0 , T0 )  D(P , Y0 ) – Q  0
4) F 2(P, Q; Y0 , T0 ) S(P , T0 ) – Q  0
52
General Function Comparative Statics: A
Market Model
3) D( P , Y0 )  Q  0
4) S ( P , T0 )  Q  0
Find dQ * dY0 , dQ * dT0 , dP * dY0 , dP * dT 0
T ake the totaldifferential of equations (3) & (4) ;
5) DP/ dP  DY/0 dY0  dQ  0
6) S P/ dP  ST/0 dT0  dQ  0
P ut only endog. vars on left
7) DP/ dP  dQ   DY/0 dY0
8) S P/ dP  dQ   ST/0 dT0
53
General Function Comparative Statics: A
Market Model
7) DP/ dP  dQ   DY/0 dY0
8) S P/ dP  dQ   ST/0 dT0
Put equations(7) & (8) in m atrix form at ( Ax  d );
 DP/  1  dP   DY/0
0  dY0 
9)  /
   

/ 
dT
0

S
d
Q
S

1
0
T 0 
 P
  
Calculate the sign of the Jacobiandet .
DP/
10) J  /
SP
1
 S P/  DP/  0
1
54
General Function Comparative Statics: A Market Model
 DP/  1  dP   DY/0
0  dY0 
11)  /
   

/ 
dT
0

S
d
Q
S

1
0
T 0 
 P
  
Take the partial  total derivatives of equation(11)
wrt exogenousvar s dY0 and dT0
 DP/
12)  /
 SP
 dP 
 1  dY0   DY/0 
  dQ   

 1 
  0 
 dY 
 0
 DP/
13)  /
 SP
 dP 
 1  dT0   0 
  dQ     S / 
 1 
  T0 
 dT 
 0
55
General Function Comparative Statics: A Market Model
 DP/  1  dP   DY/0
0  dY0 
11)  /
   

/ 
dT
0

S
d
Q
S

1
0
T 0 
 P
  
Take the partial  total derivatives of equation(11)
wrt exogenousvar s dY0 and dT0
 dP 
 DP/  1  dY0   DY/0 
12)  /
  dQ   

S

1
0




 P

 dY 
 0
Solve for the vectors of endogenousderivatives by
inverting the A m atrices of equations12
1
13) /
S P  DP/
 1
 S /
 P
 dP 
1   DY/0   dY0 
   dQ  ;
/ 
DP   0  

 dY 
 0
56
General Function Comparative Statics: A Market Model
 dP 
1   DY/0   dY0 
 1
1
13) /
   dQ 
/
/ 
/ 
S P  DP  S P DP   0  

 dY 
 0
Solve equations13 for the endogenousderivatives;
Calculate the sign of the derivatives
( DP/  0; DY/0  0)
J 
DP/
1
S P/
1
( S P/  0; ST/0  0)
 S P/  DP/  0
DY/0
dP
14)
 /
 0;
/
dY0 S P  DP
S P/ DY/0
dQ
15)
 /
 0; ;
/
dY0 S P  DP
57
General Function Comparative Statics: A Market Model
 dP 
1   0   dT0 
 1
1


16) /
/  
/
/ 
/ 
S P  DP  S P DP   ST0   dQ 
 dT 
 0
Solve equations16 for the endogenousderivatives;
Calculate the sign of the derivatives
( DP/  0; DY/0  0)
J 
DP/
1
S P/
1
( S P/  0; ST/0  0)
 S P/  DP/  0
 ST0
dP
17)
 /
 0;
/
dT0 S P  DP
/
/ /
dQ  DP ST0
18)
 /
0
/
dT0 S P  DP
58
Market model comparative static solutions by
Cramer’s rule

13)
dP

dY0
D
1
D
Y0
0
 1 Y0

 0;
J
J
D
D

P
Y0
S D
S
0
P Y0
dQ
14)
 P

0
dY0
J
J
13' ) An increase in incom e(Y0 ) causes an increase in equilibrium price paid.
14' ) An increase in incom ecauses an increase in equilibrium quantity consum ed.
0
1
S
S

1 
T0
T0
dP
dQ
15)


 0; 16)

dT0
J
J
dT0
D
P
S
P
0

J
S
T0


D S
P T0
0
J
15' ) An increase in taxes (T0 ) causes an increase in equilibrium prices paid
16' ) An increase in taxes causes a decrease in equilibrium quantity consum ed
59
Market model comparative static solutions by
matrix inversion
1
13)
J
 1
 S
 P
 dP 
D
1   D   dY 
dP Y0
D   Y    0 ; 14)

 0;
0
d
Q


dY
J

0
P   0  
 dY 
 0
S D
dQ P Y0
15)

0
dY0
J
14' ) An increase in incom e(Y0 ) will cause an increase in equilibrium price paid.
15' ) An increase in incom e will cause an increase in equilibrium quantity consum ed.
 dP 
S
D S


0
 

1 
T0
P T0
1  1
dP
dQ
dT
0

S

; 17)
16)  S D  

 0; 18)

0

d
Q
J 
dT0
J
dT0
J

 P P   T0  

 dT0 
17' ) An increase in taxes (T0 ) will cause an increase in equilibrium prices paid
18' ) An increase in taxes will cause a decrease in equilibrium quantity consum ed
60
8.7 Limitations of Comparative Statics
• Comparative statics answers the question:
how does the equilibrium change w/ a
change in a parameter.
• The adjustment process is ignored
• New equilibrium may be unstable
• Before dynamic, optimization
61