Diferensial Fungsi Majemuk
Download
Report
Transcript Diferensial Fungsi Majemuk
Diferensial Fungsi
Majemuk
-Diferensial Parsial
- Diferensial Total
- Chain rule
- dll
1. y f ( x , z )
y
a
)
f
(
x
,
z
)
x
x
y'
y
b ) f x ( x , z )
z
y
y
dy dx dz
x
z
2. p f ( q , r , s )
p
a
)
f
(
q
,
r
,
s
)
q
q
p
p ' b) f r ( q, r , s )
r
c ) f ( q, r , s ) p
s
s
p
p
p
dp
dq dr ds
q
r
s
Diferensial Parsial
Diferensial Total
High Order Partial Derivatives
Fungsi dengan lebih dari satu variabel
bebas juga dapat diturunkan lebih dari
satu kali
Turunan parsial z = f (x,y) kalau
kontinyu dapat mempunyai turunannya
sendiri. empat turunan parsial :
f f f
f
,
,
, dan 2
2
x xy yx
y
2
2
2
2
• Dapat dilambangkan fxx, fxy, fyx, dan fyy
• fxy = fyx
Partial derivatives
Cobb-Douglas production function (+=1)
Q = 96K0.3 L0.7
Q
0.7
.7
0.7
.7
MPP K
0.396 L K 28.8L K
K
Q
0.3 0.3
0.3 0.3
MPP L
0.7 96 K L 67.2 K L
L
Market model
Qd a bP a, b 0
Qs c dP c, d 0
ac
P
bd
ad bc
Q
bd
Techniques
Qd bP a
Q dP C
s
1 b Q a
1 d P c
1 a
Ap 1 c
c a a c
P
1
b
A
d b b d
1 d
of partial differentiation
• Market model
a, b 0
Qd a bP
Qs c dP c, d 0
ac
P
bd
P
a
P
c
P
b
1
0
bd
1
0
bd
a c
0
2
b d
a c
Geometric interpretation of partial
derivatives
0
2
d b d
P
• Market model
Qd a bP a, b 0
Qs c dP c, d 0
ad bc
Q
bd
Q
a
Q
c
Q
b
d
0
bd
b
0
bd
d a c
0
2
b d
ba c
0
2
d b d
Q
Qd a bP
Qs c dP
Q
S0
a, b 0
c, d 0
Q
S
S1
D1
D
P
Q
b
0
c b d
D
P
P
1
0
a b d
Qd a bP
Qs c dP
Q
a, b 0
c, d 0
S1
Q
S0
S0
D
P
Q0
Q1
D1
D0
P
Q d a c
model
0
Market
2
b
b d
P a c
0
2
d b d
Y = C + I0 + G 0
C = a + b(Y-T);
T=d+tY;
b = MPC
t = MPT
(a > 0; 0 < b < 1)
(d > 0; 0 < t < 1)
Y=( a-bd+I+G)/(1-b+tb)
C=(b(1-t)(I+G)+a-bd)/ (1-b+tb)
T=(t(I+G)+ta+d(1-b))/ (1-b+tb)
Y
1
Go 1 b bt
C
b(1 t )
Go 1 b bt
National-income model
T
t
Go 1 b bt
Input-output model
x1 b11 b12 d1
x b
d
2 21 22 2
x1 b11 d 1
x b d
2 21 2
b12 d 1
b22 d 2
∂x1/∂d1 = b11
x1 x1 d1 x1 d 2 d1
x x d x d d
1
2
2 2
2 2
Use Jacobian determinants to test the existence of
functional dependence between the functions /J/
Not limited to linear functions as /A/ (special case
of /J/
If /J/ = 0 then the non-linear or linear
functions are dependent and a solution
does not exist.
Note on Jacobian
y1 x1 y1 x2
J
Determinants
y 2 x1 y 2 x2
y
y
dy
dx1
dx2
x1
x2
dy f1dx1 f 2 dx2
Total Differentials
Diferensial T otaldy dari y f(x,z) didefinisikan sebagai :
dy lim f ( x x, z z ) f ( x, z )
x 0
y 0
ditambahkan f (x,z z ) ( x, z z ) 0
f ( x x, z z ) f ( x, z z )
dy lim
x
x
x 0
f ( x, z z ) f ( x, z )
y
lim
y
y 0
df
df
dx dz
dx
dz
f
f
y
y
dx dz atau dy dx dz
x
z
x
z
Diferensial Total
Let Utility function U = U (x1, x2, …, xn)
Differentiation of U wrt x1..n
U/ xi is the marginal utility of the good xi
dxi is the change in consumption of good xi
U
U
U
dU
dx1
dx2
dxn
x1
x2
xn
• Given a function y = f (x1, x2, …, xn)
• Total differential dy is:
y
y
y
dy
dx1
dx2
dxn
x1
x2
xn
dy f1dx1 f 2 dx2 ... f n dxn
• Total derivative of y with respect to x2 found by
dividing both sides by dx2 (partial total derivative)
Finding
total derivative from
the
dx
dy thedx
n
1
f
f
f
differential1
2
n
dx2
dx2
dx2
Chain rule (kaidah rantai)
dz dz dy
f y g x
dx dy dx
This is a case of two or more
differentiable functions, in which each
has a distinct independent variable.
where z = f(g(x)), i.e.,
z = f(y), i.e., z is a function of variable y
and
• y If=Rg(x),
= f(Q)i.e.,
and ify Q
is =ag(L)
function of variable x
dR dR dQ
f Q g L MR MPPL MRPL
dL dQ dL
dy dy du
dx du dx
y f (u ) dan u f ( x), dy / dx diperolehdengan
mendiferensialkan y ke u dan u ke x serta mengalikanhasilnya.
Kalau z z ( x, y ) dan x x(t ) dan y y(t)
z
z
dz dx dy
x
y
sehingga
dz z dx z dy
dt x dt y dt
z
x
Kaidah Rantai
y
t
Pohon rantai
Kaidah Rantai
Kalau w = w(x,y,z) dan x = x(u,v), y =
y(u,v), dan z = z(u,v), maka pohon rantai
:
w
sehingga:
x
y
u
z
v
w w x w y w z
u x u y u z u
dengan rumus serupa untuk w / v
Kalau z = z(x,y), dan x = x(s), y = y(s),
dan s = s(u,v), maka pohon rantai
menjadi z:
y
x
s
u
v
z z dx z dy s
u x ds y ds u
dengan rumus serupa unt uk z / v